» Articles » PMID: 24202555

Fabrication and Application of Flexible, Multimodal Light-emitting Devices for Wireless Optogenetics

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2013 Nov 9
PMID 24202555
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

The rise of optogenetics provides unique opportunities to advance materials and biomedical engineering, as well as fundamental understanding in neuroscience. This protocol describes the fabrication of optoelectronic devices for studying intact neural systems. Unlike optogenetic approaches that rely on rigid fiber optics tethered to external light sources, these novel devices carry wirelessly powered microscale, inorganic light-emitting diodes (μ-ILEDs) and multimodal sensors inside the brain. We describe the technical procedures for construction of these devices, their corresponding radiofrequency power scavengers and their implementation in vivo for experimental application. In total, the timeline of the procedure, including device fabrication, implantation and preparation to begin in vivo experimentation, can be completed in ~3-8 weeks. Implementation of these devices allows for chronic (tested for up to 6 months) wireless optogenetic manipulation of neural circuitry in animals navigating complex natural or home-cage environments, interacting socially, and experiencing other freely moving behaviors.

Citing Articles

Design considerations for optogenetic applications of soft micro-LED-based device systems across diverse nervous systems.

Lee J, Kim T, Cho S, Shin J, Yeo W, Kim T Bioact Mater. 2025; 48:217-241.

PMID: 40046014 PMC: 11880665. DOI: 10.1016/j.bioactmat.2025.02.006.


Laser micromachining of tapered optical fibers for spatially selective control of neural activity.

Rizzo A, Lemma E, Pisano F, Pisanello M, Sileo L, De Vittorio M Microelectron Eng. 2024; 192:88-95.

PMID: 39650857 PMC: 7617094. DOI: 10.1016/j.mee.2018.02.010.


Antidepressant Effect of Extract on Behavioral Changes in Astrocyte Ablation Mouse Model of Depression by Modulating Neuroinflammation through the Inhibition of Lipocalin-2.

Hong S, Kim Y, Kwon Y, Cho S Nutrients. 2024; 16(13).

PMID: 38999797 PMC: 11243176. DOI: 10.3390/nu16132049.


Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices.

Dong K, Liu W, Su Y, Lyu Y, Huang H, Zheng N BME Front. 2024; 4:0034.

PMID: 38435343 PMC: 10907027. DOI: 10.34133/bmef.0034.


Multifunctional microelectronic fibers enable wireless modulation of gut and brain neural circuits.

Sahasrabudhe A, Rupprecht L, Orguc S, Khudiyev T, Tanaka T, Sands J Nat Biotechnol. 2023; 42(6):892-904.

PMID: 37349522 PMC: 11180606. DOI: 10.1038/s41587-023-01833-5.


References
1.
Carter M, Yizhar O, Chikahisa S, Nguyen H, Adamantidis A, Nishino S . Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci. 2010; 13(12):1526-33. PMC: 3174240. DOI: 10.1038/nn.2682. View

2.
Iwai Y, Honda S, Ozeki H, Hashimoto M, Hirase H . A simple head-mountable LED device for chronic stimulation of optogenetic molecules in freely moving mice. Neurosci Res. 2011; 70(1):124-7. DOI: 10.1016/j.neures.2011.01.007. View

3.
Airan R, Thompson K, Fenno L, Bernstein H, Deisseroth K . Temporally precise in vivo control of intracellular signalling. Nature. 2009; 458(7241):1025-9. DOI: 10.1038/nature07926. View

4.
Gerits A, Vanduffel W . Optogenetics in primates: a shining future?. Trends Genet. 2013; 29(7):403-11. DOI: 10.1016/j.tig.2013.03.004. View

5.
Adamantidis A, Tsai H, Boutrel B, Zhang F, Stuber G, Budygin E . Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci. 2011; 31(30):10829-35. PMC: 3171183. DOI: 10.1523/JNEUROSCI.2246-11.2011. View