» Articles » PMID: 34923199

A Roadmap for the Characterization of Energy Metabolism in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells

Overview
Date 2021 Dec 19
PMID 34923199
Citations 9
Authors
Affiliations
Soon will be listed here.
Abstract

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are an increasingly employed model in cardiac research and drug discovery. As cellular metabolism plays an integral role in determining phenotype, the characterization of the metabolic profile of hiPSC-CM during maturation is crucial for their translational application. In this study we employ a combination of methods including extracellular flux, C-glucose enrichment and targeted metabolomics to characterize the metabolic profile of hiPSC-CM during their maturation in culture from 6 weeks, up to 12 weeks. Results show a progressive remodeling of pathways involved in energy metabolism and substrate utilization along with an increase in sarcomere regularity. The oxidative capacity of hiPSC-CM and particularly their ability to utilize fatty acids increased with time. In parallel, relative glucose oxidation was reduced while glutamine oxidation was maintained at similar levels. There was also evidence of increased coupling of glycolysis to mitochondrial respiration, and away from glycolytic branch pathways at later stages of maturation. The rate of glycolysis as assessed by lactate production was maintained at both stages but with significant alterations in proximal glycolytic enzymes such as hexokinase and phosphofructokinase. We observed a progressive maturation of mitochondrial oxidative capacity at comparable levels of mitochondrial content between these time-points with enhancement of mitochondrial network structure. These results show that the metabolic profile of hiPSC-CM is progressively restructured, recapitulating aspects of early post-natal heart development. This would be particularly important to consider when employing these cell model in studies where metabolism plays an important role.

Citing Articles

Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects.

Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H Stem Cell Res Ther. 2024; 15(1):354.

PMID: 39380099 PMC: 11462682. DOI: 10.1186/s13287-024-03961-4.


Insulin-Activated Signaling Pathway and GLUT4 Membrane Translocation in hiPSC-Derived Cardiomyocytes.

Querio G, Antoniotti S, Levi R, Fleischmann B, Gallo M, Malan D Int J Mol Sci. 2024; 25(15).

PMID: 39125765 PMC: 11312081. DOI: 10.3390/ijms25158197.


How can we use stem cell-derived cardiomyocytes to understand the involvement of energetic metabolism in alterations of cardiac function?.

Rebs S, Streckfuss-Bomeke K Front Mol Med. 2024; 3:1222986.

PMID: 39086669 PMC: 11285589. DOI: 10.3389/fmmed.2023.1222986.


Metabolic Remodeling during Early Cardiac Lineage Specification of Pluripotent Stem Cells.

Bobori S, Zhu Y, Saarinen A, Liuzzo A, Folmes C Metabolites. 2023; 13(10).

PMID: 37887411 PMC: 10608731. DOI: 10.3390/metabo13101086.


Human blood vessel organoids reveal a critical role for CTGF in maintaining microvascular integrity.

Romeo S, Secco I, Schneider E, Reumiller C, Santos C, Zoccarato A Nat Commun. 2023; 14(1):5552.

PMID: 37689702 PMC: 10492781. DOI: 10.1038/s41467-023-41326-2.