» Articles » PMID: 34916732

22.8 Multi-Functional Microelectrode Array System Featuring 59,760 Electrodes, 2048 Electrophysiology Channels, Impedance and Neurotransmitter Measurement Units

Overview
Date 2021 Dec 17
PMID 34916732
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Various CMOS-based micro-electrode arrays (MEAs) have been developed in recent years for extracellular electrophysiological recording/stimulation of electrogenic cells [1-5]. Mostly two approaches have been used: (i) the activepixel approach (APS) [2-4], which features simultaneous readout of all electrodes, however, at the expense of a comparably high noise level, and (ii) the switchmatrix (SM) approach, which yields better noise performance, whereas only a subset of electrodes (e.g.,1024) is simultaneously read out [5]. All systems feature, at most, voltage recording and/or voltage/current stimulation functionalities.

Citing Articles

Electrophysiological Phenotype Characterization of Human iPSC-Derived Neuronal Cell Lines by Means of High-Density Microelectrode Arrays.

Ronchi S, Buccino A, Prack G, Kumar S, Schroter M, Fiscella M Adv Biol (Weinh). 2021; 5(3):e2000223.

PMID: 33729694 PMC: 7610355. DOI: 10.1002/adbi.202000223.


Massively parallel microwire arrays integrated with CMOS chips for neural recording.

Obaid A, Hanna M, Wu Y, Kollo M, Racz R, Angle M Sci Adv. 2020; 6(12):eaay2789.

PMID: 32219158 PMC: 7083623. DOI: 10.1126/sciadv.aay2789.


Optimal Electrode Size for Multi-Scale Extracellular-Potential Recording From Neuronal Assemblies.

Viswam V, Obien M, Franke F, Frey U, Hierlemann A Front Neurosci. 2019; 13:385.

PMID: 31105515 PMC: 6498989. DOI: 10.3389/fnins.2019.00385.


Single-Cell Electrical Stimulation Using CMOS-Based High-Density Microelectrode Arrays.

Ronchi S, Fiscella M, Marchetti C, Viswam V, Muller J, Frey U Front Neurosci. 2019; 13:208.

PMID: 30918481 PMC: 6424875. DOI: 10.3389/fnins.2019.00208.


Stimulation and Artifact-Suppression Techniques for In Vitro High-Density Microelectrode Array Systems.

Shadmani A, Viswam V, Chen Y, Bounik R, Dragas J, Radivojevic M IEEE Trans Biomed Eng. 2019; 66(9):2481-2490.

PMID: 30605090 PMC: 6711758. DOI: 10.1109/TBME.2018.2890530.


References
1.
Berdondini L, Imfeld K, Maccione A, Tedesco M, Neukom S, Koudelka-Hep M . Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip. 2009; 9(18):2644-51. DOI: 10.1039/b907394a. View

2.
Obien M, Deligkaris K, Bullmann T, Bakkum D, Frey U . Revealing neuronal function through microelectrode array recordings. Front Neurosci. 2015; 8:423. PMC: 4285113. DOI: 10.3389/fnins.2014.00423. View

3.
Ballini M, Muller J, Livi P, Chen Y, Frey U, Stettler A . A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro. IEEE J Solid-State Circuits. 2017; 49(11):2705-2719. PMC: 5424881. DOI: 10.1109/JSSC.2014.2359219. View