» Articles » PMID: 30418922

Impedance Spectroscopy and Electrophysiological Imaging of Cells With a High-Density CMOS Microelectrode Array System

Overview
Publisher IEEE
Date 2018 Nov 13
PMID 30418922
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

A monolithic multi-functional CMOS microelectrode array system was developed that enables label-free electrochemical impedance spectroscopy of cells in vitro at high spatiotemporal resolution. The electrode array includes 59,760 platinum microelectrodes, densely packed within a 4.5 mm × 2.5 mm sensing region at a pitch of 13.5 μm. A total of 32 on-chip lock-in amplifiers can be used to measure the impedance of any arbitrarily chosen subset of electrodes in the array. A sinusoidal voltage, generated by an on-chip waveform generator with a frequency range from 1 Hz to 1 MHz, was applied to the reference electrode. The sensing currents through the selected recording electrodes were amplified, demodulated, filtered, and digitized to obtain the magnitude and phase information of the respective impedances. The circuitry consumes only 412 μW at 3.3 V supply voltage and occupies only 0.1 mm, for each channel. The system also included 2048 extracellular action-potential recording channels on the same chip. Proof of concept measurements of electrical impedance imaging and electrophysiology recording of cardiac cells and brain slices are demonstrated in this paper. Optical and impedance images showed a strong correlation.

Citing Articles

Tutorial on impedance and dielectric spectroscopy for single-cell characterisation on microfluidic platforms: theory, practice, and recent advances.

Dadkhah Tehrani F, OToole M, Collins D Lab Chip. 2025; 25(5):837-855.

PMID: 39949266 PMC: 11826307. DOI: 10.1039/d4lc00882k.


Field-Programmable Gate Array (FPGA)-Based Lock-In Amplifier System with Signal Enhancement: A Comprehensive Review on the Design for Advanced Measurement Applications.

Galaviz-Aguilar J, Vargas-Rosales C, Falcone F, Aguilar-Avelar C Sensors (Basel). 2025; 25(2).

PMID: 39860956 PMC: 11768915. DOI: 10.3390/s25020584.


Microfluidic platforms for monitoring cardiomyocyte electromechanical activity.

Wang W, Su W, Han J, Song W, Li X, Xu C Microsyst Nanoeng. 2025; 11(1):4.

PMID: 39788940 PMC: 11718118. DOI: 10.1038/s41378-024-00751-z.


Assessment of chemotherapeutic effects on cancer cells using adhesion noise spectroscopy.

Ell M, Bui M, Kigili S, Zeck G, Prado-Lopez S Front Bioeng Biotechnol. 2024; 12:1385730.

PMID: 38803844 PMC: 11128629. DOI: 10.3389/fbioe.2024.1385730.


Opportunities in optical and electrical single-cell technologies to study microbial ecosystems.

Mermans F, Mattelin V, Van den Eeckhoudt R, Garcia-Timermans C, Van Landuyt J, Guo Y Front Microbiol. 2023; 14:1233705.

PMID: 37692384 PMC: 10486927. DOI: 10.3389/fmicb.2023.1233705.


References
1.
Buitenweg J, Rutten W, Willems W, van Nieuwkasteele J . Measurement of sealing resistance of cell-electrode interfaces in neuronal cultures using impedance spectroscopy. Med Biol Eng Comput. 1999; 36(5):630-7. DOI: 10.1007/BF02524436. View

2.
Manickam A, Chevalier A, McDermott M, Ellington A, Hassibi A . A CMOS Electrochemical Impedance Spectroscopy (EIS) Biosensor Array. IEEE Trans Biomed Circuits Syst. 2013; 4(6):379-90. DOI: 10.1109/TBCAS.2010.2081669. View

3.
Viswam V, Chen Y, Shadmani A, Dragas J, Bounik R, Milos R . 2048 Action Potential Recording Channels with 2.4 µVrms Noise and Stimulation Artifact Suppression. IEEE Biomed Circuits Syst Conf. 2018; 2016:136-139. PMC: 5953405. DOI: 10.1109/BioCAS.2016.7833750. View

4.
Viswam V, Obien M, Frey U, Franke F, Hierlemann A . Acquisition of Bioelectrical Signals with Small Electrodes. IEEE Biomed Circuits Syst Conf. 2018; 2017:1-4. PMC: 5958997. DOI: 10.1109/BIOCAS.2017.8325216. View

5.
Chi T, Park J, Butts J, Hookway T, Su A, Zhu C . A Multi-Modality CMOS Sensor Array for Cell-Based Assay and Drug Screening. IEEE Trans Biomed Circuits Syst. 2016; 9(6):801-14. DOI: 10.1109/TBCAS.2015.2504984. View