6.
Karimi-Abdolrezaee S, Billakanti R
. Reactive astrogliosis after spinal cord injury-beneficial and detrimental effects. Mol Neurobiol. 2012; 46(2):251-64.
DOI: 10.1007/s12035-012-8287-4.
View
7.
Song F, Tian M, Zhang H
. Molecular imaging in stem cell therapy for spinal cord injury. Biomed Res Int. 2014; 2014:759514.
PMC: 3950476.
DOI: 10.1155/2014/759514.
View
8.
Orr M, Gensel J
. Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurotherapeutics. 2018; 15(3):541-553.
PMC: 6095779.
DOI: 10.1007/s13311-018-0631-6.
View
9.
Nestrasil I, Shapiro E, Svatkova A, Dickson P, Chen A, Wakumoto A
. Intrathecal enzyme replacement therapy reverses cognitive decline in mucopolysaccharidosis type I. Am J Med Genet A. 2017; 173(3):780-783.
PMC: 5367919.
DOI: 10.1002/ajmg.a.38073.
View
10.
Yang Z, Wang K
. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015; 38(6):364-74.
PMC: 4559283.
DOI: 10.1016/j.tins.2015.04.003.
View
11.
Albadawi H, Chen J, Oklu R, Wu Y, Wojtkiewicz G, Pulli B
. Spinal Cord Inflammation: Molecular Imaging after Thoracic Aortic Ischemia Reperfusion Injury. Radiology. 2016; 282(1):202-211.
PMC: 5207124.
DOI: 10.1148/radiol.2016152222.
View
12.
Lo W, Hsu C, Wu A, Yang L, Chen W, Chiu W
. A novel cell-based therapy for contusion spinal cord injury using GDNF-delivering NIH3T3 cells with dual reporter genes monitored by molecular imaging. J Nucl Med. 2008; 49(9):1512-9.
DOI: 10.2967/jnumed.108.051896.
View
13.
Harkey 3rd H, White 4th E, Tibbs Jr R, Haines D
. A clinician's view of spinal cord injury. Anat Rec B New Anat. 2003; 271(1):41-8.
DOI: 10.1002/ar.b.10012.
View
14.
Brenner M
. Role of GFAP in CNS injuries. Neurosci Lett. 2014; 565:7-13.
PMC: 4049287.
DOI: 10.1016/j.neulet.2014.01.055.
View
15.
Magaki S, Williams C, Vinters H
. Glial function (and dysfunction) in the normal & ischemic brain. Neuropharmacology. 2017; 134(Pt B):218-225.
PMC: 6132239.
DOI: 10.1016/j.neuropharm.2017.11.009.
View
16.
Wahl A, Correa D, Imobersteg S, Maurer M, Kaiser J, Augath M
. Targeting Therapeutic Antibodies to the CNS: a Comparative Study of Intrathecal, Intravenous, and Subcutaneous Anti-Nogo A Antibody Treatment after Stroke in Rats. Neurotherapeutics. 2020; 17(3):1153-1159.
PMC: 7609675.
DOI: 10.1007/s13311-020-00864-z.
View
17.
C Zambrano-Rodriguez P, Bolanos-Puchet S, Reyes-Alva H, Garcia-Orozco L, Romero-Pina M, Martinez-Cruz A
. Micro-CT myelography using contrast-enhanced digital subtraction: feasibility and initial results in healthy rats. Neuroradiology. 2019; 61(3):323-330.
DOI: 10.1007/s00234-019-02162-8.
View
18.
Bradbury E, Burnside E
. Moving beyond the glial scar for spinal cord repair. Nat Commun. 2019; 10(1):3879.
PMC: 6713740.
DOI: 10.1038/s41467-019-11707-7.
View
19.
Baldwin S, Broderick R, Blades D, Scheff S
. Alterations in temporal/spatial distribution of GFAP- and vimentin-positive astrocytes after spinal cord contusion with the New York University spinal cord injury device. J Neurotrauma. 1999; 15(12):1015-26.
DOI: 10.1089/neu.1998.15.1015.
View
20.
Ineichen B, Schnell L, Gullo M, Kaiser J, Schneider M, Mosberger A
. Direct, long-term intrathecal application of therapeutics to the rodent CNS. Nat Protoc. 2016; 12(1):104-131.
DOI: 10.1038/nprot.2016.151.
View