» Articles » PMID: 34878830

Diurnal Metabolic Control in Cyanobacteria Requires Perception of Second Messenger Signaling Molecule C-di-AMP by the Carbon Control Protein SbtB

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Dec 8
PMID 34878830
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Because of their photosynthesis-dependent lifestyle, cyanobacteria evolved sophisticated regulatory mechanisms to adapt to oscillating day-night metabolic changes. How they coordinate the metabolic switch between autotrophic and glycogen-catabolic metabolism in light and darkness is poorly understood. Recently, c-di-AMP has been implicated in diurnal regulation, but its mode of action remains elusive. To unravel the signaling functions of c-di-AMP in cyanobacteria, we isolated c-di-AMP receptor proteins. Thereby, the carbon-sensor protein SbtB was identified as a major c-di-AMP receptor, which we confirmed biochemically and by x-ray crystallography. In search for the c-di-AMP signaling function of SbtB, we found that both SbtB and c-di-AMP cyclase–deficient mutants showed reduced diurnal growth and that c-di-AMP–bound SbtB interacts specifically with the glycogen-branching enzyme GlgB. Accordingly, both mutants displayed impaired glycogen synthesis during the day and impaired nighttime survival. Thus, the pivotal role of c-di-AMP in day-night acclimation can be attributed to SbtB-mediated regulation of glycogen metabolism.

Citing Articles

ComFB, a new widespread family of c-di-NMP receptor proteins.

Samir S, Elshereef A, Alva V, Hahn J, Dubnau D, Galperin M bioRxiv. 2024; .

PMID: 39574629 PMC: 11581024. DOI: 10.1101/2024.11.10.622515.


Bacterial cell volume regulation and the importance of cyclic di-AMP.

Foster A, van den Noort M, Poolman B Microbiol Mol Biol Rev. 2024; 88(2):e0018123.

PMID: 38856222 PMC: 11332354. DOI: 10.1128/mmbr.00181-23.


DarA-the central processing unit for the integration of osmotic with potassium and amino acid homeostasis in .

Warneke R, Herzberg C, Weiss M, Schramm T, Hertel D, Link H J Bacteriol. 2024; 206(7):e0019024.

PMID: 38832794 PMC: 11270874. DOI: 10.1128/jb.00190-24.


The redox-sensitive R-loop of the carbon control protein SbtB contributes to the regulation of the cyanobacterial CCM.

Mantovani O, Haffner M, Walke P, Elshereef A, Wagner B, Petras D Sci Rep. 2024; 14(1):7885.

PMID: 38570698 PMC: 10991534. DOI: 10.1038/s41598-024-58354-7.


A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine.

Xi H, Nie X, Gao F, Liang X, Li H, Zhou H Sci Adv. 2023; 9(43):eadj9075.

PMID: 37878710 PMC: 10599626. DOI: 10.1126/sciadv.adj9075.


References
1.
Suzuki E, Ohkawa H, Moriya K, Matsubara T, Nagaike Y, Iwasaki I . Carbohydrate metabolism in mutants of the cyanobacterium Synechococcus elongatus PCC 7942 defective in glycogen synthesis. Appl Environ Microbiol. 2010; 76(10):3153-9. PMC: 2869141. DOI: 10.1128/AEM.00397-08. View

2.
Matsuda N, Kobayashi H, Katoh H, Ogawa T, Futatsugi L, Nakamura T . Na+-dependent K+ uptake Ktr system from the cyanobacterium Synechocystis sp. PCC 6803 and its role in the early phases of cell adaptation to hyperosmotic shock. J Biol Chem. 2004; 279(52):54952-62. DOI: 10.1074/jbc.M407268200. View

3.
Iijima H, Shirai T, Okamoto M, Kondo A, Hirai M, Osanai T . Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol. 2015; 6:888. PMC: 4549654. DOI: 10.3389/fmicb.2015.00888. View

4.
Forchhammer K, Luddecke J . Sensory properties of the PII signalling protein family. FEBS J. 2015; 283(3):425-37. DOI: 10.1111/febs.13584. View

5.
Agostoni M, Logan-Jackson A, Heinz E, Severin G, Bruger E, Waters C . Homeostasis of Second Messenger Cyclic-di-AMP Is Critical for Cyanobacterial Fitness and Acclimation to Abiotic Stress. Front Microbiol. 2018; 9:1121. PMC: 5986932. DOI: 10.3389/fmicb.2018.01121. View