» Articles » PMID: 34874602

Enantioselective Synthesis of Dithia[5]helicenes and Their Postsynthetic Functionalization to Access Dithia[9]helicenes

Overview
Specialty Chemistry
Date 2021 Dec 7
PMID 34874602
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

A highly enantioselective synthesis of 5,13-disubstituted dibenzo[d,d']benzo[1,2-b:4,3-b']dithiophenes is reported. Key for the successful assembly of these helical architectures is the last two successive Au-catalyzed intramolecular alkyne hydroarylation events. Specifically, the second cyclization is the enantiodetermining step of the whole process and provides the desired helicenes with excellent ee values when a TADDOL-derived 1,2,3-(triazolium)phosphonite moiety (TADDOL: α,α,α',α'-tetraaryl-1,3-dioxolane-4,5-dimethanol) is employed as an ancillary ligand. The absolute stereochemistry of the newly prepared structures has been determined by X-ray crystallography to be P; the optical properties of these heterohelicenes are also reported. A three-step procedure was subsequently developed that allows the transformation of the initially obtained dithia[5]helicenes into dithia[9]helicenes without erosion of the enantiopurity.

Citing Articles

Catalytic kinetic resolution of helical polycyclic phenols via an organocatalyzed enantioselective dearomative amination reaction.

Chu A, Zhu B, Zhang X, Zhu H, Zhang J, Liu X Sci Adv. 2024; 10(47):eadr1628.

PMID: 39576850 PMC: 11584004. DOI: 10.1126/sciadv.adr1628.


Organocatalytic hydrogen bond donor/Lewis base (HBD/LB) synthesis and chiroptical properties of thiabridged [5]helicenes.

Lupi M, Fabbri M, Mazzeo G, Longhi G, Abbate S, Viglianisi C Org Biomol Chem. 2024; 22(35):7154-7163.

PMID: 39040026 PMC: 11393524. DOI: 10.1039/d4ob00979g.


Enantioselective synthesis of [4]helicenes by organocatalyzed intermolecular C-H amination.

Liu X, Zhu B, Zhang X, Zhu H, Zhang J, Chu A Nat Commun. 2024; 15(1):732.

PMID: 38272928 PMC: 10810882. DOI: 10.1038/s41467-024-45049-w.


Electrochemical synthesis of heterodehydro[7]helicenes.

Khalid M, Salem M, Sako M, Kondo M, Sasai H, Takizawa S Commun Chem. 2023; 5(1):166.

PMID: 36697698 PMC: 9814689. DOI: 10.1038/s42004-022-00780-7.


[5]-Helistatins: Tubulin-Binding Helicenes with Antimitotic Activity.

Rushworth J, Thawani A, Fajardo-Ruiz E, Meiring J, Heise C, White A JACS Au. 2022; 2(11):2561-2570.

PMID: 36465552 PMC: 9709948. DOI: 10.1021/jacsau.2c00435.


References
1.
Urbano A, Carreno M . Enantioselective synthesis of helicenequinones and -bisquinones. Org Biomol Chem. 2012; 11(5):699-708. DOI: 10.1039/c2ob27108g. View

2.
Yamamoto K, Okazumi M, Suemune H, Usui K . Synthesis of [5]helicenes with a substituent exclusively on the interior side of the helix by metal-catalyzed cycloisomerization. Org Lett. 2013; 15(8):1806-9. DOI: 10.1021/ol400332j. View

3.
Grzybowski M, Sadowski B, Butenschon H, Gryko D . Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew Chem Int Ed Engl. 2019; 59(8):2998-3027. PMC: 7027897. DOI: 10.1002/anie.201904934. View

4.
Rickhaus M, Mayor M, Juricek M . Strain-induced helical chirality in polyaromatic systems. Chem Soc Rev. 2016; 45(6):1542-56. DOI: 10.1039/c5cs00620a. View

5.
Jakubec M, Storch J . Recent Advances in Functionalizations of Helicene Backbone. J Org Chem. 2020; 85(21):13415-13428. DOI: 10.1021/acs.joc.0c01837. View