Evidence That Hypothalamic Gliosis Is Related to Impaired Glucose Homeostasis in Adults With Obesity
Overview
Authors
Affiliations
Objective: Preclinical research implicates hypothalamic glial cell responses in the pathogenesis of obesity and type 2 diabetes (T2D). In the current study we sought to translate such findings to humans by testing whether radiologic markers of gliosis in the mediobasal hypothalamus (MBH) were greater in individuals with obesity and impaired glucose homeostasis or T2D.
Research Design And Methods: Using cross-sectional and prospective cohort study designs, we applied a validated quantitative MRI approach to assess gliosis in 67 adults with obesity and normal glucose tolerance, impaired glucose tolerance (IGT), or T2D. Assessments of glucose homeostasis were conducted via oral glucose tolerance tests (OGTT) and β-cell modeling.
Results: We found significantly greater T2 relaxation times (a marker of gliosis by MRI), that were independent of adiposity, in the groups with IGT and T2D as compared with the group with normal glucose tolerance. Findings were present in the MBH, but not control regions. Moreover, positive linear associations were present in the MBH but not control regions between T2 relaxation time and glucose area under the curve during an OGTT, fasting glucose concentrations, hemoglobin A1c, and visceral adipose tissue mass, whereas negative linear relationships were present in the MBH for markers of insulin sensitivity and β-cell function. In a prospective cohort study, greater MBH T2 relaxation times predicted declining insulin sensitivity over 1 year.
Conclusions: Findings support a role for hypothalamic gliosis in the progression of insulin resistance in obesity and thus T2D pathogenesis in humans.
Update on Hypothalamic Inflammation and Gliosis: Expanding Evidence of Relevance Beyond Obesity.
Huang A, Yeum D, Sewaybricker L, Aleksic S, Thomas M, Melhorn S Curr Obes Rep. 2025; 14(1):6.
PMID: 39775194 DOI: 10.1007/s13679-024-00595-8.
Hypothalamic Gliosis is Associated With Multiple Cardiovascular Disease Risk Factors.
Lo J, Melhorn S, Kee S, Olerich K, Huang A, Yeum D medRxiv. 2024; .
PMID: 39371136 PMC: 11451704. DOI: 10.1101/2024.09.19.24313914.
Hypothalamic MRI-derived microstructure is associated with neurocognitive aging in humans.
Aleksic S, Fleysher R, Weiss E, Tal N, Darby T, Blumen H Neurobiol Aging. 2024; 141:102-112.
PMID: 38850591 PMC: 11295133. DOI: 10.1016/j.neurobiolaging.2024.05.018.
A review of air pollution as a driver of cardiovascular disease risk across the diabetes spectrum.
Bonanni L, Wittkopp S, Long C, Aleman J, Newman J Front Endocrinol (Lausanne). 2024; 15:1321323.
PMID: 38665261 PMC: 11043478. DOI: 10.3389/fendo.2024.1321323.
In utero exposure to maternal diabetes or hypertension and childhood hypothalamic gliosis.
Olerich K, Sewaybricker L, Kee S, Melhorn S, Chandrasekaran S, Schur E Int J Obes (Lond). 2024; 48(4):594-597.
PMID: 38273035 PMC: 11421291. DOI: 10.1038/s41366-024-01463-0.