» Articles » PMID: 34835910

Ultrahigh Sensitivity of a Plasmonic Pressure Sensor with a Compact Size

Overview
Date 2021 Nov 27
PMID 34835910
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

This study proposes a compact plasmonic metal-insulator-metal pressure sensor comprising a bus waveguide and a resonator, including one horizontal slot and several stubs. We calculate the transmittance spectrum and the electromagnetic field distribution using the finite element method. When the resonator's top layer undergoes pressure, the resonance wavelength redshifts with increasing deformation, and their relation is nearly linear. The designed pressure sensor possesses the merits of ultrahigh sensitivity, multiple modes, and a simple structure. The maximum sensitivity and resonance wavelength shift can achieve 592.44 nm/MPa and 364 nm, respectively, which are the highest values to our knowledge. The obtained sensitivity shows 23.32 times compared to the highest one reported in the literature. The modeled design paves a promising path for applications in the nanophotonic field.

Citing Articles

Special Issue on the State-of-the-Art Optical Properties and Applications of Metallic Nanostructures in Asia.

Chiang H Nanomaterials (Basel). 2024; 14(4).

PMID: 38392695 PMC: 10892711. DOI: 10.3390/nano14040322.


Enhancement of Sensitivity with High-Reflective-Index Guided-Wave Nanomaterials for a Long-Range Surface Plasmon Resonance Sensor.

Wu L, Che K, Xiang Y, Qin Y Nanomaterials (Basel). 2022; 12(1).

PMID: 35010118 PMC: 8746679. DOI: 10.3390/nano12010168.


Double Narrow Fano Resonances via Diffraction Coupling of Magnetic Plasmon Resonances in Embedded 3D Metamaterials for High-Quality Sensing.

Hu H, Lu X, Huang J, Chen K, Su J, Yan Z Nanomaterials (Basel). 2021; 11(12).

PMID: 34947710 PMC: 8708183. DOI: 10.3390/nano11123361.

References
1.
Chau Y, Ming T, Chao C, Thotagamuge R, Kooh M, Huang H . Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Sci Rep. 2021; 11(1):18515. PMC: 8445917. DOI: 10.1038/s41598-021-98001-z. View

2.
Tathfif I, Yaseer A, Rashid K, Sagor R . Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express. 2021; 29(20):32365-32376. DOI: 10.1364/OE.439974. View

3.
Han Z, Bozhevolnyi S . Radiation guiding with surface plasmon polaritons. Rep Prog Phys. 2012; 76(1):016402. DOI: 10.1088/0034-4885/76/1/016402. View

4.
Fu H, Tam H, Shao L, Dong X, Wai P, Lu C . Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer. Appl Opt. 2008; 47(15):2835-9. DOI: 10.1364/ao.47.002835. View

5.
Chau Y, Chao C, Huang H, Kooh M, Kumara N, Lim C . Ultrawide Bandgap and High Sensitivity of a Plasmonic Metal-Insulator-Metal Waveguide Filter with Cavity and Baffles. Nanomaterials (Basel). 2020; 10(10). PMC: 7602602. DOI: 10.3390/nano10102030. View