Yang W, Yan S, Xu Z, Chen C, Wang J, Yan X
Nanomaterials (Basel). 2024; 14(21).
PMID: 39513799
PMC: 11547371.
DOI: 10.3390/nano14211719.
Matsumori K, Fujimura R, Retsch M
J Phys Chem C Nanomater Interfaces. 2023; 127(38):19127-19140.
PMID: 37791102
PMC: 10544032.
DOI: 10.1021/acs.jpcc.3c03307.
Zhou G, Yan S, Chen L, Zhang X, Shen L, Liu P
Nanomaterials (Basel). 2022; 12(21).
PMID: 36364566
PMC: 9655127.
DOI: 10.3390/nano12213784.
Yan S, Liu P, Chen Z, Liu J, Shen L, Zhang X
Micromachines (Basel). 2022; 13(6).
PMID: 35744460
PMC: 9231242.
DOI: 10.3390/mi13060846.
Zhang X, Yan S, Liu J, Ren Y, Zhang Y, Shen L
Micromachines (Basel). 2022; 13(5).
PMID: 35630217
PMC: 9144545.
DOI: 10.3390/mi13050750.
Breaking the Symmetry of a Metal-Insulator-Metal-Based Resonator for Sensing Applications.
Chao C, Chau Y, Chiang H
Nanoscale Res Lett. 2022; 17(1):48.
PMID: 35441252
PMC: 9018922.
DOI: 10.1186/s11671-022-03684-6.
Ultrahigh Sensitivity of a Plasmonic Pressure Sensor with a Compact Size.
Chao C, Chau Y, Chen S, Huang H, Lim C, Kooh M
Nanomaterials (Basel). 2021; 11(11).
PMID: 34835910
PMC: 8622075.
DOI: 10.3390/nano11113147.
A multichannel color filter with the functions of optical sensor and switch.
Chau Y, Chao C, Huang H, Chen S, Kao T, Chiang H
Sci Rep. 2021; 11(1):22910.
PMID: 34824366
PMC: 8617143.
DOI: 10.1038/s41598-021-02453-2.
Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure.
Chau Y, Ming T, Chao C, Thotagamuge R, Kooh M, Huang H
Sci Rep. 2021; 11(1):18515.
PMID: 34531463
PMC: 8445917.
DOI: 10.1038/s41598-021-98001-z.
Improved Refractive Index-Sensing Performance of Multimode Fano-Resonance-Based Metal-Insulator-Metal Nanostructures.
Chau Y, Chao C, Jumat S, Kooh M, Thotagamuge R, Lim C
Nanomaterials (Basel). 2021; 11(8).
PMID: 34443927
PMC: 8402130.
DOI: 10.3390/nano11082097.
An Electrically Tunable Dual-Wavelength Refractive Index Sensor Based on a Metagrating Structure Integrating Epsilon-Near-Zero Materials.
Meng Z, Cao H, Liu R, Wu X
Sensors (Basel). 2020; 20(8).
PMID: 32316493
PMC: 7219054.
DOI: 10.3390/s20082301.
Tunable Fano Resonance and Enhanced Sensing in a Simple Au/TiO Hybrid Metasurface.
He Z, Xue W, Cui W, Li C, Li Z, Pu L
Nanomaterials (Basel). 2020; 10(4).
PMID: 32260584
PMC: 7221975.
DOI: 10.3390/nano10040687.
Plasmonic nanosensor based on multiple independently tunable Fano resonances.
Cheng L, Wang Z, He X, Cao P
Beilstein J Nanotechnol. 2020; 10:2527-2537.
PMID: 31921531
PMC: 6941414.
DOI: 10.3762/bjnano.10.243.
Fano Resonance in a MIM Waveguide with Two Triangle Stubs Coupled with a Split-Ring Nanocavity for Sensing Application.
Yang X, Hua E, Wang M, Wang Y, Wen F, Yan S
Sensors (Basel). 2019; 19(22).
PMID: 31731585
PMC: 6891347.
DOI: 10.3390/s19224972.
Plasmonics for Biosensing.
Han X, Liu K, Sun C
Materials (Basel). 2019; 12(9).
PMID: 31052240
PMC: 6539671.
DOI: 10.3390/ma12091411.
Magnetic-field sensor with self-reference characteristic based on a magnetic fluid and independent plasmonic dual resonances.
Ren K, Ren X, He Y, Han Q
Beilstein J Nanotechnol. 2019; 10:247-255.
PMID: 30746318
PMC: 6350879.
DOI: 10.3762/bjnano.10.23.
Fano Resonance in Waveguide Coupled Surface Exciton Polaritons: Theory and Application in Biosensor.
Zhu J, Gan S, Ruan B, Wu L, Cai H, Dai X
Sensors (Basel). 2018; 18(12).
PMID: 30558226
PMC: 6308616.
DOI: 10.3390/s18124437.
Optofluidics Refractometers.
Li C, Bai G, Zhang Y, Zhang M, Jian A
Micromachines (Basel). 2018; 9(3).
PMID: 30424070
PMC: 6187763.
DOI: 10.3390/mi9030136.
A Plasmonic Chip-Scale Refractive Index Sensor Design Based on Multiple Fano Resonances.
Wen K, Chen L, Zhou J, Lei L, Fang Y
Sensors (Basel). 2018; 18(10).
PMID: 30241378
PMC: 6209998.
DOI: 10.3390/s18103181.
Self-Reference Refractive Index Sensor Based on Independently Controlled Double Resonances in Side-Coupled U-Shaped Resonators.
Ren X, Ren K, Ming C
Sensors (Basel). 2018; 18(5).
PMID: 29710806
PMC: 5982117.
DOI: 10.3390/s18051376.