» Articles » PMID: 34825946

A Primer on Texture Analysis in Abdominal Radiology

Overview
Publisher Springer
Date 2021 Nov 26
PMID 34825946
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

The number of publications on texture analysis (TA), radiomics, and radiogenomics has been growing exponentially, with abdominal radiologists aiming to build new prognostic or predictive biomarkers for a wide range of clinical applications including the use of oncological imaging to advance the field of precision medicine. TA is specifically concerned with the study of the variation of pixel intensity values in radiological images. Radiologists aim to capture pixel variation in radiological images to deliver new insights into tumor biology that cannot be derived from visual inspection alone. TA remains an active area of investigation and requires further standardization prior to its clinical acceptance and applicability. This review is for radiologists interested in this rapidly evolving field, who are thinking of performing research or want to better interpret results in this arena. We will review the main concepts in TA, workflow processes, and existing challenges and steps to overcome them, as well as look at publications in body imaging with external validation.

Citing Articles

Differentiation of Early Sacroiliitis Using Machine-Learning- Supported Texture Analysis.

Zhu Q, Wang Q, Hu X, Dang X, Yu X, Chen L Diagnostics (Basel). 2025; 15(2.

PMID: 39857093 PMC: 11763746. DOI: 10.3390/diagnostics15020209.


Radiomics Beyond the Hype: A Critical Evaluation Toward Oncologic Clinical Use.

Horvat N, Papanikolaou N, Koh D Radiol Artif Intell. 2024; 6(4):e230437.

PMID: 38717290 PMC: 11294952. DOI: 10.1148/ryai.230437.


CT Imaging Assessment of Pancreatic Adenocarcinoma Resectability after Neoadjuvant Therapy: Current Status and Perspective on the Use of Radiomics.

Khasawneh H, Ferreira Dalla Pria H, Miranda J, Nevin R, Chhabra S, Hamdan D J Clin Med. 2023; 12(21).

PMID: 37959287 PMC: 10649102. DOI: 10.3390/jcm12216821.


Quantifiable Measures of Abdominal Wall Motion for Quality Assessment of Cine-MRI Slices in Detection of Abdominal Adhesions.

van den Beukel B, De Wilde B, Joosten F, Goor H, Venderink W, Huisman H J Imaging. 2023; 9(5).

PMID: 37233312 PMC: 10219278. DOI: 10.3390/jimaging9050092.


Current status and future perspectives of radiomics in hepatocellular carcinoma.

Miranda J, Horvat N, Fonseca G, de Arimateia Batista Araujo-Filho J, Fernandes M, Charbel C World J Gastroenterol. 2023; 29(1):43-60.

PMID: 36683711 PMC: 9850949. DOI: 10.3748/wjg.v29.i1.43.


References
1.
Gillies R, Kinahan P, Hricak H . Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2015; 278(2):563-77. PMC: 4734157. DOI: 10.1148/radiol.2015151169. View

2.
Lubner M, Smith A, Sandrasegaran K, Sahani D, Pickhardt P . CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics. 2017; 37(5):1483-1503. DOI: 10.1148/rg.2017170056. View

3.
Li W, Liu H, Cheng F, Li Y, Li S, Yan J . Artificial intelligence applications for oncological positron emission tomography imaging. Eur J Radiol. 2020; 134:109448. DOI: 10.1016/j.ejrad.2020.109448. View

4.
Stanzione A, Gambardella M, Cuocolo R, Ponsiglione A, Romeo V, Imbriaco M . Prostate MRI radiomics: A systematic review and radiomic quality score assessment. Eur J Radiol. 2020; 129:109095. DOI: 10.1016/j.ejrad.2020.109095. View

5.
Traverso A, Wee L, Dekker A, Gillies R . Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J Radiat Oncol Biol Phys. 2018; 102(4):1143-1158. PMC: 6690209. DOI: 10.1016/j.ijrobp.2018.05.053. View