» Articles » PMID: 34824218

Room-temperature Dynamic Nuclear Polarization Enhanced NMR Spectroscopy of Small Biological Molecules in Water

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Nov 26
PMID 34824218
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Nuclear magnetic resonance (NMR) spectroscopy is a powerful and popular technique for probing the molecular structures, dynamics and chemical properties. However the conventional NMR spectroscopy is bottlenecked by its low sensitivity. Dynamic nuclear polarization (DNP) boosts NMR sensitivity by orders of magnitude and resolves this limitation. In liquid-state this revolutionizing technique has been restricted to a few specific non-biological model molecules in organic solvents. Here we show that the carbon polarization in small biological molecules, including carbohydrates and amino acids, can be enhanced sizably by in situ Overhauser DNP (ODNP) in water at room temperature and at high magnetic field. An observed connection between ODNP C enhancement factor and paramagnetic C NMR shift has led to the exploration of biologically relevant heterocyclic compound indole. The QM/MM MD simulation underscores the dynamics of intermolecular hydrogen bonds as the driving force for the scalar ODNP in a long-living radical-substrate complex. Our work reconciles results obtained by DNP spectroscopy, paramagnetic NMR and computational chemistry and provides new mechanistic insights into the high-field scalar ODNP.

Citing Articles

Overhauser Dynamic Nuclear Polarization Enables Single Scan Benchtop C NMR Spectroscopy in Continuous-Flow.

Phuong J, Salgado B, Labusch T, Hasse H, Munnemann K Anal Chem. 2025; 97(8):4308-4317.

PMID: 39984167 PMC: 11883742. DOI: 10.1021/acs.analchem.4c03985.


Overhauser enhanced liquid state nuclear magnetic resonance spectroscopy in one and two dimensions.

Levien M, Yang L, van der Ham A, Reinhard M, John M, Purea A Nat Commun. 2024; 15(1):5904.

PMID: 39003303 PMC: 11246421. DOI: 10.1038/s41467-024-50265-5.


Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy.

Widmalm G JACS Au. 2024; 4(1):20-39.

PMID: 38274261 PMC: 10807006. DOI: 10.1021/jacsau.3c00639.


Triplet dynamic nuclear polarization of pyruvate supramolecular chemistry.

Hamachi T, Nishimura K, Sakamoto K, Kawashima Y, Kouno H, Sato S Chem Sci. 2023; 14(47):13842-13850.

PMID: 38075643 PMC: 10699585. DOI: 10.1039/d3sc04123a.


Polarizing agents beyond pentacene for efficient triplet dynamic nuclear polarization in glass matrices.

Sakamoto K, Hamachi T, Miyokawa K, Tateishi K, Uesaka T, Kurashige Y Proc Natl Acad Sci U S A. 2023; 120(44):e2307926120.

PMID: 37871226 PMC: 10622900. DOI: 10.1073/pnas.2307926120.


References
1.
Ardenkjaer-Larsen J, Boebinger G, Comment A, Duckett S, Edison A, Engelke F . Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscopy. Angew Chem Int Ed Engl. 2015; 54(32):9162-85. PMC: 4943876. DOI: 10.1002/anie.201410653. View

2.
Bielytskyi P, Grasing D, Mote K, Gupta K, Vega S, Madhu P . C → H transfer of light-induced hyperpolarization allows for selective detection of protons in frozen photosynthetic reaction center. J Magn Reson. 2018; 293:82-91. DOI: 10.1016/j.jmr.2018.06.003. View

3.
Dzien P, Fages A, Jona G, Brindle K, Schwaiger M, Frydman L . Following Metabolism in Living Microorganisms by Hyperpolarized (1)H NMR. J Am Chem Soc. 2016; 138(37):12278-86. DOI: 10.1021/jacs.6b07483. View

4.
Ebbinghaus S, Kim S, Heyden M, Yu X, Heugen U, Gruebele M . An extended dynamical hydration shell around proteins. Proc Natl Acad Sci U S A. 2007; 104(52):20749-52. PMC: 2410073. DOI: 10.1073/pnas.0709207104. View

5.
Conti Nibali V, Havenith M . New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J Am Chem Soc. 2014; 136(37):12800-7. DOI: 10.1021/ja504441h. View