» Articles » PMID: 34785263

Prenatal Particulate Matter Exposure and Mitochondrial Mutational Load at the Maternal-fetal Interface: Effect Modification by Genetic Ancestry

Overview
Journal Mitochondrion
Specialty Cell Biology
Date 2021 Nov 17
PMID 34785263
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

Prenatal ambient particulate matter (PM) exposure impacts infant development and alters placental mitochondrial DNA abundance. We investigated whether the timing of PM exposure predicts placental mitochondrial mutational load using NextGen sequencing in 283 multi-ethnic mother-infant dyads. We observed increased PMexposure, particularly during mid- to late-pregnancy and among genes coding for NADH dehydrogenase and subunits of ATP synthase, was associated with a greater amount of nonsynonymous mutations. The strongest associations were observed for participants of African ancestry. Further work is needed to tease out the role of mitochondrial genetics and its impact on offspring development and emerging disease disparities.

Citing Articles

Epigenetic mechanisms of particulate matter exposure: air pollution and hazards on human health.

Gavito-Covarrubias D, Ramirez-Diaz I, Guzman-Linares J, Limon I, Manuel-Sanchez D, Molina-Herrera A Front Genet. 2024; 14:1306600.

PMID: 38299096 PMC: 10829887. DOI: 10.3389/fgene.2023.1306600.


Mitochondrial might: powering the peripartum for risk and resilience.

Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B Front Behav Neurosci. 2024; 17:1286811.

PMID: 38187925 PMC: 10767224. DOI: 10.3389/fnbeh.2023.1286811.


Ambient air pollution and infant health: a narrative review.

Lin L, Chen J, Yu Y, Dong G EBioMedicine. 2023; 93:104609.

PMID: 37169689 PMC: 10363448. DOI: 10.1016/j.ebiom.2023.104609.


In utero particulate matter exposure in association with newborn mitochondrial ND4L heteroplasmy and its role in overweight during early childhood.

Cosemans C, Wang C, Alfano R, Martens D, Sleurs H, Dockx Y Environ Health. 2022; 21(1):88.

PMID: 36117180 PMC: 9484069. DOI: 10.1186/s12940-022-00899-z.


Environmental Chemical Exposures and Mitochondrial Dysfunction: a Review of Recent Literature.

Reddam A, McLarnan S, Kupsco A Curr Environ Health Rep. 2022; 9(4):631-649.

PMID: 35902457 PMC: 9729331. DOI: 10.1007/s40572-022-00371-7.


References
1.
Rosa M, Just A, Sanchez Guerra M, Kloog I, Hsu H, Brennan K . Identifying sensitive windows for prenatal particulate air pollution exposure and mitochondrial DNA content in cord blood. Environ Int. 2016; 98:198-203. PMC: 5139686. DOI: 10.1016/j.envint.2016.11.007. View

2.
Holland O, Nitert M, Gallo L, Vejzovic M, Fisher J, Perkins A . Review: Placental mitochondrial function and structure in gestational disorders. Placenta. 2016; 54:2-9. DOI: 10.1016/j.placenta.2016.12.012. View

3.
Marchington D, Scott-Brown M, Barlow D, Poulton J . Mosaicism for mitochondrial DNA polymorphic variants in placenta has implications for the feasibility of prenatal diagnosis in mtDNA diseases. Eur J Hum Genet. 2006; 14(7):816-23. DOI: 10.1038/sj.ejhg.5201618. View

4.
Cowell W, Brunst K, Colicino E, Zhang L, Zhang X, Bloomquist T . Placental mitochondrial DNA mutational load and perinatal outcomes: Findings from a multi-ethnic pregnancy cohort. Mitochondrion. 2021; 59:267-275. PMC: 8299859. DOI: 10.1016/j.mito.2021.06.006. View

5.
Cruz A, Ferrasa A, Muotri A, Herai R . Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion. 2018; 46:345-360. DOI: 10.1016/j.mito.2018.09.005. View