» Articles » PMID: 34771551

Cancer Tissue Classification Using Supervised Machine Learning Applied to MALDI Mass Spectrometry Imaging

Overview
Journal Cancers (Basel)
Publisher MDPI
Specialty Oncology
Date 2021 Nov 13
PMID 34771551
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) can determine the spatial distribution of analytes such as protein distributions in a tissue section according to their mass-to-charge ratio. Here, we explored the clinical potential of machine learning (ML) applied to MALDI MSI data for cancer diagnostic classification using tissue microarrays (TMAs) on 302 colorectal (CRC) and 257 endometrial cancer (EC)) patients. ML based on deep neural networks discriminated colorectal tumour from normal tissue with an overall accuracy of 98% in balanced cross-validation (98.2% sensitivity and 98.6% specificity). Moreover, our machine learning approach predicted the presence of lymph node metastasis (LNM) for primary tumours of EC with an accuracy of 80% (90% sensitivity and 69% specificity). Our results demonstrate the capability of MALDI MSI for complementing classic histopathological examination for cancer diagnostic applications.

Citing Articles

Mass Spectrometry Imaging for Spatial Ingredient Classification in Plant-Based Food.

Vats M, Flinders B, Visvikis T, Dawid C, Hofmann T, Cuypers E J Am Soc Mass Spectrom. 2024; 36(1):100-107.

PMID: 39644241 PMC: 11697329. DOI: 10.1021/jasms.4c00353.


Spatially resolved metabolomics: From metabolite mapping to function visualising.

Min X, Zhao Y, Yu M, Zhang W, Jiang X, Guo K Clin Transl Med. 2024; 14(11):e70031.

PMID: 39456123 PMC: 11511672. DOI: 10.1002/ctm2.70031.


An Update on the Use of Artificial Intelligence in Digital Pathology for Oral Epithelial Dysplasia Research.

Alajaji S, Khoury Z, Jessri M, Sciubba J, Sultan A Head Neck Pathol. 2024; 18(1):38.

PMID: 38727841 PMC: 11087425. DOI: 10.1007/s12105-024-01643-4.


Classification of Pancreatic Ductal Adenocarcinoma Using MALDI Mass Spectrometry Imaging Combined with Neural Networks.

Kanter F, Lellmann J, Thiele H, Kalloger S, Schaeffer D, Wellmann A Cancers (Basel). 2023; 15(3).

PMID: 36765644 PMC: 9913229. DOI: 10.3390/cancers15030686.


Applications of spatially resolved omics in the field of endocrine tumors.

Hou Y, Gao Y, Guo S, Zhang Z, Chen R, Zhang X Front Endocrinol (Lausanne). 2023; 13:993081.

PMID: 36704039 PMC: 9873308. DOI: 10.3389/fendo.2022.993081.


References
1.
Klein O, Kanter F, Kulbe H, Jank P, Denkert C, Nebrich G . MALDI-Imaging for Classification of Epithelial Ovarian Cancer Histotypes from a Tissue Microarray Using Machine Learning Methods. Proteomics Clin Appl. 2018; 13(1):e1700181. DOI: 10.1002/prca.201700181. View

2.
Deininger S, Cornett D, Paape R, Becker M, Pineau C, Rauser S . Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal Bioanal Chem. 2011; 401(1):167-81. PMC: 3124646. DOI: 10.1007/s00216-011-4929-z. View

3.
Meding S, Nitsche U, Balluff B, Elsner M, Rauser S, Schone C . Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J Proteome Res. 2012; 11(3):1996-2003. DOI: 10.1021/pr200784p. View

4.
Schwamborn K, Kriegsmann M, Weichert W . MALDI imaging mass spectrometry - From bench to bedside. Biochim Biophys Acta Proteins Proteom. 2016; 1865(7):776-783. DOI: 10.1016/j.bbapap.2016.10.014. View

5.
Mittal P, Klingler-Hoffmann M, Arentz G, Winderbaum L, Kaur G, Anderson L . Annexin A2 and alpha actinin 4 expression correlates with metastatic potential of primary endometrial cancer. Biochim Biophys Acta Proteins Proteom. 2016; 1865(7):846-857. DOI: 10.1016/j.bbapap.2016.10.010. View