» Articles » PMID: 34767760

Engineering Ligand-specific Biosensors for Aromatic Amino Acids and Neurochemicals

Overview
Journal Cell Syst
Publisher Cell Press
Date 2021 Nov 12
PMID 34767760
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Microbial biosensors have diverse applications in metabolic engineering and medicine. Specific and accurate quantification of chemical concentrations allows for adaptive regulation of enzymatic pathways and temporally precise expression of diagnostic reporters. Although biosensors should differentiate structurally similar ligands with distinct biological functions, such specific sensors are rarely found in nature and challenging to create. Using E. coli Nissle 1917, a generally regarded as safe microbe, we characterized two biosensor systems that promiscuously recognize aromatic amino acids or neurochemicals. To improve the sensors' selectivity and sensitivity, we applied rational protein engineering by identifying and mutagenizing amino acid residues and successfully demonstrated the ligand-specific biosensors for phenylalanine, tyrosine, phenylethylamine, and tyramine. Additionally, our approach revealed insights into the uncharacterized structure of the FeaR regulator, including critical residues in ligand binding. These results lay the groundwork for developing kinetically adaptive microbes for diverse applications. A record of this paper's transparent peer review process is included in the supplemental information.

Citing Articles

Natural and engineered cyclodipeptides: Biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction.

Widodo W, Billerbeck S Eng Microbiol. 2024; 3(1):100067.

PMID: 39628525 PMC: 11610984. DOI: 10.1016/j.engmic.2022.100067.


Manipulating the molecular specificity of transcriptional biosensors for tryptophan metabolites and analogs.

Xi C, Ma Y, Amrofell M, Moon T Cell Rep Phys Sci. 2024; 5(10).

PMID: 39513040 PMC: 11542736. DOI: 10.1016/j.xcrp.2024.102211.


Advances in ligand-specific biosensing for structurally similar molecules.

Xi C, Diao J, Moon T Cell Syst. 2023; 14(12):1024-1043.

PMID: 38128482 PMC: 10751988. DOI: 10.1016/j.cels.2023.10.009.


Algorithmic Programming of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration in a Probiotic Bacterium.

Lebovich M, Zeng M, Andrews L ACS Synth Biol. 2023; 12(9):2632-2649.

PMID: 37581922 PMC: 10510703. DOI: 10.1021/acssynbio.3c00232.


Computational structural-based GPCR optimization for user-defined ligand: Implications for the development of biosensors.

Di Rienzo L, Miotto M, Milanetti E, Ruocco G Comput Struct Biotechnol J. 2023; 21:3002-3009.

PMID: 37249971 PMC: 10220229. DOI: 10.1016/j.csbj.2023.05.004.


References
1.
Verger D, Carr P, Kwok T, Ollis D . Crystal structure of the N-terminal domain of the TyrR transcription factor responsible for gene regulation of aromatic amino acid biosynthesis and transport in Escherichia coli K12. J Mol Biol. 2007; 367(1):102-12. DOI: 10.1016/j.jmb.2006.12.018. View

2.
Chen H, Nwe P, Yang Y, Rosen C, Bielecka A, Kuchroo M . A Forward Chemical Genetic Screen Reveals Gut Microbiota Metabolites That Modulate Host Physiology. Cell. 2019; 177(5):1217-1231.e18. PMC: 6536006. DOI: 10.1016/j.cell.2019.03.036. View

3.
Hoynes-OConnor A, Shopera T, Hinman K, Creamer J, Moon T . Enabling complex genetic circuits to respond to extrinsic environmental signals. Biotechnol Bioeng. 2017; 114(7):1626-1631. DOI: 10.1002/bit.26279. View

4.
Pittard J, Camakaris H, Yang J . The TyrR regulon. Mol Microbiol. 2004; 55(1):16-26. DOI: 10.1111/j.1365-2958.2004.04385.x. View

5.
Lyskov S, Chou F, Conchuir S, Der B, Drew K, Kuroda D . Serverification of molecular modeling applications: the Rosetta Online Server that Includes Everyone (ROSIE). PLoS One. 2013; 8(5):e63906. PMC: 3661552. DOI: 10.1371/journal.pone.0063906. View