» Articles » PMID: 34721072

Lung Perfusion Assessment by Bedside Electrical Impedance Tomography in Critically Ill Patients

Overview
Journal Front Physiol
Date 2021 Nov 1
PMID 34721072
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

As a portable, radiation-free imaging modality, electrical impedance tomography (EIT) technology has shown promise in the bedside visual assessment of lung perfusion distribution in critically ill patients. The two main methods of EIT for assessing lung perfusion are the pulsatility and conductivity contrast (saline) bolus method. Increasing attention is being paid to the saline bolus EIT method in the evaluation of regional pulmonary perfusion in clinical practice. This study seeks to provide an overview of experimental and clinical studies with the aim of clarifying the progress made in the use of the saline bolus EIT method. Animal studies revealed that the saline bolus EIT method presented good consistency with single-photon emission CT (SPECT) in the evaluation of lung regional perfusion changes in various pathological conditions. Moreover, the saline bolus EIT method has been applied to assess the lung perfusion in a pulmonary embolism and the effect of positive end-expiratory pressure (PEEP) on regional ventilation/perfusion ratio (V/Q) and acute respiratory distress syndrome (ARDS) in several clinical studies. The implementation of saline boluses, data analyses, precision, and cutoff values varied among different studies, and a consensus must be reached regarding the clinical application of the saline bolus EIT method. Further study is required to validate the impact of the described saline bolus EIT method on decision-making, therapeutic management, and outcomes in critically ill patients.

Citing Articles

Gravitational distribution of regional intrapulmonary shunt assessed by EIT in ARDS.

Xu M, Chi Y, Yuan S, Gao Y, Sun X, Long Y Respir Res. 2025; 26(1):66.

PMID: 39987063 PMC: 11847383. DOI: 10.1186/s12931-025-03141-9.


Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Li J, Zhu M, Guo Y, Li W, He Q, Wang Y Respir Res. 2025; 26(1):7.

PMID: 39780173 PMC: 11715541. DOI: 10.1186/s12931-024-03090-9.


Past, present, and future of electrical impedance tomography and myography for medical applications: a scoping review.

Youssef Baby L, Bedran R, Doumit A, El Hassan R, Maalouf N Front Bioeng Biotechnol. 2024; 12:1486789.

PMID: 39726983 PMC: 11670078. DOI: 10.3389/fbioe.2024.1486789.


Electrical impedance tomography monitoring in adult ICU patients: state-of-the-art, recommendations for standardized acquisition, processing, and clinical use, and future directions.

Scaramuzzo G, Pavlovsky B, Adler A, Baccinelli W, Bodor D, Damiani L Crit Care. 2024; 28(1):377.

PMID: 39563476 PMC: 11577873. DOI: 10.1186/s13054-024-05173-x.


Technical Principles and Clinical Applications of Electrical Impedance Tomography in Pulmonary Monitoring.

Cui Z, Liu X, Qu H, Wang H Sensors (Basel). 2024; 24(14).

PMID: 39065936 PMC: 11281055. DOI: 10.3390/s24144539.


References
1.
Frerichs I, Amato M, van Kaam A, Tingay D, Zhao Z, Grychtol B . Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the TRanslational EIT developmeNt stuDy group. Thorax. 2016; 72(1):83-93. PMC: 5329047. DOI: 10.1136/thoraxjnl-2016-208357. View

2.
Proenca M, Braun F, Sola J, Adler A, Lemay M, Thiran J . Non-invasive monitoring of pulmonary artery pressure from timing information by EIT: experimental evaluation during induced hypoxia. Physiol Meas. 2016; 37(6):713-26. DOI: 10.1088/0967-3334/37/6/713. View

3.
Grassi L, Santiago R, Florio G, Berra L . Bedside Evaluation of Pulmonary Embolism by Electrical Impedance Tomography. Anesthesiology. 2019; 132(4):896. DOI: 10.1097/ALN.0000000000003059. View

4.
Putensen C, Hentze B, Muenster S, Muders T . Electrical Impedance Tomography for Cardio-Pulmonary Monitoring. J Clin Med. 2019; 8(8). PMC: 6722958. DOI: 10.3390/jcm8081176. View

5.
Bondesson D, Schneider M, Gaass T, Kuhn B, Bauman G, Dietrich O . Nonuniform Fourier-decomposition MRI for ventilation- and perfusion-weighted imaging of the lung. Magn Reson Med. 2019; 82(4):1312-1321. PMC: 6767124. DOI: 10.1002/mrm.27803. View