» Articles » PMID: 34716685

Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries

Overview
Journal Adv Sci (Weinh)
Date 2021 Oct 30
PMID 34716685
Citations 2
Authors
Affiliations
Soon will be listed here.
Abstract

Organic compounds bearing redox-active ionic pairs as electrode materials for high-performance rechargeable batteries have gained growing attention owing to the properties of synthetic tunability, high theoretical capacity, and low solubility. Herein, an innovative biredox-ionic composite, i.e., ethylviologen dianthraquinone-2-sulfonate (EV-AQ ), affording multiple and reversible active sites as a cathode material in lithium-organic batteries is reported. EV-AQ exhibits a high initial capacity of 199.2 mAh g at 0.1 C rate, which corresponds to the transfer of two electrons from one redox couple EV /EV and four electrons from two redox-active AQ anions. It is notable that EV-AQ shows remarkably improved cyclability compared to the precursors. The capacity retention is 89% and the Coulombic efficiency approaches 100% over 120 cycles at 0.5 C rate. The results offer evidence that AQ into the EV scaffold with multiple redox sites are promising in developing high-energy-density organic rechargeable batteries.

Citing Articles

A new thiol-sulfur click chemistry for lithium-organosulfide batteries.

Zou R, Liu W, Ran F Innovation (Camb). 2025; 6(2):100765.

PMID: 39991483 PMC: 11846034. DOI: 10.1016/j.xinn.2024.100765.


Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy.

Wang W, Tang Y, Liu J, Li H, Wang R, Zhang L Chem Sci. 2023; 14(34):9033-9040.

PMID: 37655030 PMC: 10466338. DOI: 10.1039/d3sc03435f.


Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries.

Wang Z, Fan Q, Guo W, Yang C, Fu Y Adv Sci (Weinh). 2021; 9(1):e2103632.

PMID: 34716685 PMC: 8728824. DOI: 10.1002/advs.202103632.

References
1.
Lee M, Hong J, Kim H, Lim H, Cho S, Kang K . Organic nanohybrids for fast and sustainable energy storage. Adv Mater. 2014; 26(16):2558-65. DOI: 10.1002/adma.201305005. View

2.
Kim H, Seo D, Yoon G, Goddard 3rd W, Lee Y, Yoon W . The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li2C6O6, Using Combined Experimental and First Principle Studies. J Phys Chem Lett. 2015; 5(17):3086-92. DOI: 10.1021/jz501557n. View

3.
Chen D, Avestro A, Chen Z, Sun J, Wang S, Xiao M . A rigid naphthalenediimide triangle for organic rechargeable lithium-ion batteries. Adv Mater. 2015; 27(18):2907-12. DOI: 10.1002/adma.201405416. View

4.
Zhao Q, Wang J, Lu Y, Li Y, Liang G, Chen J . Oxocarbon Salts for Fast Rechargeable Batteries. Angew Chem Int Ed Engl. 2016; 55(40):12528-32. DOI: 10.1002/anie.201607194. View

5.
Muench S, Wild A, Friebe C, Haupler B, Janoschka T, Schubert U . Polymer-Based Organic Batteries. Chem Rev. 2016; 116(16):9438-84. DOI: 10.1021/acs.chemrev.6b00070. View