» Articles » PMID: 34702997

Development of Deep Learning-based Detecting Systems for Pathologic Myopia Using Retinal Fundus Images

Overview
Journal Commun Biol
Specialty Biology
Date 2021 Oct 27
PMID 34702997
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Globally, cases of myopia have reached epidemic levels. High myopia and pathological myopia (PM) are the leading cause of visual impairment and blindness in China, demanding a large volume of myopia screening tasks to control the rapid growing myopic prevalence. It is desirable to develop the automatically intelligent system to facilitate these time- and labor- consuming tasks. In this study, we designed a series of deep learning systems to detect PM and myopic macular lesions according to a recent international photographic classification system (META-PM) classification based on color fundus images. Notably, our systems recorded robust performance both in the test and external validation dataset. The performance was comparable to the general ophthalmologist and retinal specialist. With the extensive adoption of this technology, effective mass screening for myopic population will become feasible on a national scale.

Citing Articles

Deep learning methods for improving the accuracy and efficiency of pathological image analysis.

Huang T, Huang X, Yin H Sci Prog. 2025; 108(1):368504241306830.

PMID: 39814425 PMC: 11736776. DOI: 10.1177/00368504241306830.


Machine Learning Approaches in High Myopia: Systematic Review and Meta-Analysis.

Zuo H, Huang B, He J, Fang L, Huang M J Med Internet Res. 2025; 27():e57644.

PMID: 39753217 PMC: 11748443. DOI: 10.2196/57644.


Self-supervised learning-enhanced deep learning method for identifying myopic maculopathy in high myopia patients.

Zhang J, Xiao F, Zou H, Feng R, He J iScience. 2024; 27(8):110566.

PMID: 39211543 PMC: 11359982. DOI: 10.1016/j.isci.2024.110566.


Artificial intelligence in chorioretinal pathology through fundoscopy: a comprehensive review.

Driban M, Yan A, Selvam A, Ong J, Vupparaboina K, Chhablani J Int J Retina Vitreous. 2024; 10(1):36.

PMID: 38654344 PMC: 11036694. DOI: 10.1186/s40942-024-00554-4.


Development and validation of predictive models for myopia onset and progression using extensive 15-year refractive data in children and adolescents.

Zhao J, Yu Y, Li Y, Li F, Zhang Z, Jian W J Transl Med. 2024; 22(1):289.

PMID: 38494492 PMC: 10946190. DOI: 10.1186/s12967-024-05075-0.


References
1.
Zhang J, Wu Z, Li F, Xie C, Ren T, Chen J . A Deep Learning Framework for Driving Behavior Identification on In-Vehicle CAN-BUS Sensor Data. Sensors (Basel). 2019; 19(6). PMC: 6471704. DOI: 10.3390/s19061356. View

2.
Gupta K, Campbell J, Taylor S, Brown J, Ostmo S, Paul Chan R . A Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning to Monitor Disease Regression After Treatment. JAMA Ophthalmol. 2019; 137(9):1029-1036. PMC: 6613298. DOI: 10.1001/jamaophthalmol.2019.2442. View

3.
Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H . Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115-118. PMC: 8382232. DOI: 10.1038/nature21056. View

4.
Liao C, Ding X, Han X, Jiang Y, Zhang J, Scheetz J . Role of Parental Refractive Status in Myopia Progression: 12-Year Annual Observation From the Guangzhou Twin Eye Study. Invest Ophthalmol Vis Sci. 2019; 60(10):3499-3506. DOI: 10.1167/iovs.19-27164. View

5.
Sahlsten J, Jaskari J, Kivinen J, Turunen L, Jaanio E, Hietala K . Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading. Sci Rep. 2019; 9(1):10750. PMC: 6656880. DOI: 10.1038/s41598-019-47181-w. View