Yang Q, Bee Y, Lim C, Sabanayagam C, Yim-Lui Cheung C, Wong T
    
    
    EClinicalMedicine. 2025; 81:103089.
  
  
    PMID: 40052065
    
          PMC: 11883405.
    
          DOI: 10.1016/j.eclinm.2025.103089.
      
 
                                  
  
    Zulu N, Piotie P, Webb E, Maphenduka W, Cook S, Rheeder P
    
    
    J Public Health Afr. 2025; 16(1):681.
  
  
    PMID: 39968353
    
          PMC: 11830854.
    
          DOI: 10.4102/jphia.v16i1.681.
      
 
                                  
  
    Grossman G, Cattell T, Abbott A, MacIntyre D
    
    
    Adv Exp Med Biol. 2025; 1468:505-509.
  
  
    PMID: 39930245
    
    
          DOI: 10.1007/978-3-031-76550-6_82.
      
 
                                  
  
    Irodi A, Zhu Z, Grzybowski A, Wu Y, Cheung C, Li H
    
    
    Eye (Lond). 2025; .
  
  
    PMID: 39910282
    
    
          DOI: 10.1038/s41433-025-03633-4.
      
 
                                  
  
    He Z, Li W
    
    
    Diabetes Metab Syndr Obes. 2025; 18():85-92.
  
  
    PMID: 39802619
    
          PMC: 11718508.
    
          DOI: 10.2147/DMSO.S495364.
      
 
                              
              
                              
                                      
  Microvascular Metrics on Diabetic Retinopathy Severity: Analysis of Diabetic Eye Images from Real-World Data.
  
    Cusco C, Esteve-Briculle P, Almazan-Moga A, Fernandez-Carneado J, Ponsati B
    
    
    Biomedicines. 2025; 12(12.
  
  
    PMID: 39767660
    
          PMC: 11673885.
    
          DOI: 10.3390/biomedicines12122753.
      
 
                                          
                                                          
  Artificial Intelligence in Uveitis: Innovations in Diagnosis and Therapeutic Strategies.
  
    Murugan S, Sanjay S, Somanath A, Mahendradas P, Patil A, Kaur K
    
    
    Clin Ophthalmol. 2024; 18:3753-3766.
  
  
    PMID: 39703602
    
          PMC: 11656483.
    
          DOI: 10.2147/OPTH.S495307.
      
 
                                          
                                                          
  Screening and evaluation of diabetic retinopathy  a deep learning network model: A prospective study.
  
    Yao L, Cao C, Yu G, Shu X, Fan X, Zhang Y
    
    
    World J Diabetes. 2024; 15(12):2302-2310.
  
  
    PMID: 39676804
    
          PMC: 11580591.
    
          DOI: 10.4239/wjd.v15.i12.2302.
      
 
                                          
                                                          
  Evaluating a Foundation Artificial Intelligence Model for Glaucoma Detection Using Color Fundus Photographs.
  
    Chuter B, Huynh J, Hallaj S, Walker E, Liebmann J, Fazio M
    
    
    Ophthalmol Sci. 2024; 5(1):100623.
  
  
    PMID: 39650567
    
          PMC: 11625234.
    
          DOI: 10.1016/j.xops.2024.100623.
      
 
                                          
                                                          
  HyMNet: A Multimodal Deep Learning System for Hypertension Prediction Using Fundus Images and Cardiometabolic Risk Factors.
  
    Baharoon M, Almatar H, Alduhayan R, Aldebasi T, Alahmadi B, Bokhari Y
    
    
    Bioengineering (Basel). 2024; 11(11).
  
  
    PMID: 39593740
    
          PMC: 11591283.
    
          DOI: 10.3390/bioengineering11111080.
      
 
                                          
                                                          
  Research trends and hotspots in fundus image segmentation from 2007 to 2023: A bibliometric analysis.
  
    Deng H, Wang Y, Cheng V, He Y, Wen Z, Chen S
    
    
    Heliyon. 2024; 10(21):e39329.
  
  
    PMID: 39524903
    
          PMC: 11544040.
    
          DOI: 10.1016/j.heliyon.2024.e39329.
      
 
                                          
                                                          
  The application of artificial intelligence in diabetic retinopathy: progress and prospects.
  
    Xu X, Zhang M, Huang S, Li X, Kui X, Liu J
    
    
    Front Cell Dev Biol. 2024; 12:1473176.
  
  
    PMID: 39524224
    
          PMC: 11543434.
    
          DOI: 10.3389/fcell.2024.1473176.
      
 
                                          
                                                          
  Heatmap analysis for artificial intelligence explainability in diabetic retinopathy detection: illuminating the rationale of deep learning decisions.
  
    Malerbi F, Nakayama L, Prado P, Yamanaka F, Melo G, Regatieri C
    
    
    Ann Transl Med. 2024; 12(5):89.
  
  
    PMID: 39507460
    
          PMC: 11534741.
    
          DOI: 10.21037/atm-24-73.
      
 
                                          
                                                          
  Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Software: IDx-DR and RetCAD.
  
    Grzybowski A, Brona P, Krzywicki T, Ruamviboonsuk P
    
    
    Ophthalmol Ther. 2024; 14(1):73-84.
  
  
    PMID: 39503992
    
          PMC: 11724818.
    
          DOI: 10.1007/s40123-024-01049-z.
      
 
                                          
                                                          
  The application and clinical translation of the self-evolving machine learning methods in predicting diabetic retinopathy and visualizing clinical transformation.
  
    Li B, Hu L, Zhang S, Li S, Tang W, Chen G
    
    
    Front Endocrinol (Lausanne). 2024; 15:1429974.
  
  
    PMID: 39363895
    
          PMC: 11446766.
    
          DOI: 10.3389/fendo.2024.1429974.
      
 
                                          
                                                          
  Novel Approaches for Early Detection of Retinal Diseases Using Artificial Intelligence.
  
    Sorrentino F, Gardini L, Fontana L, Musa M, Gabai A, Maniaci A
    
    
    J Pers Med. 2024; 14(7).
  
  
    PMID: 39063944
    
          PMC: 11278069.
    
          DOI: 10.3390/jpm14070690.
      
 
                                          
                                                          
  Ophthalmology and Artificial Intelligence: Present or Future? A Diabetic Retinopathy Screening Perspective of the Pursuit for Fairness.
  
    Nakayama L, Ribeiro L, Malerbi F, Regatieri C
    
    
    Front Ophthalmol (Lausanne). 2024; 2:898181.
  
  
    PMID: 38983555
    
          PMC: 11182262.
    
          DOI: 10.3389/fopht.2022.898181.
      
 
                                          
                                                          
  Retina Fundus Photograph-Based Artificial Intelligence Algorithms in Medicine: A Systematic Review.
  
    Grzybowski A, Jin K, Zhou J, Pan X, Wang M, Ye J
    
    
    Ophthalmol Ther. 2024; 13(8):2125-2149.
  
  
    PMID: 38913289
    
          PMC: 11246322.
    
          DOI: 10.1007/s40123-024-00981-4.
      
 
                                          
                                                          
  Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera.
  
    Kubin A, Huhtinen P, Ohtonen P, Keskitalo A, Wirkkala J, Hautala N
    
    
    Ann Med. 2024; 56(1):2352018.
  
  
    PMID: 38738798
    
          PMC: 11095279.
    
          DOI: 10.1080/07853890.2024.2352018.
      
 
                                          
                                                          
  An Economic Analysis for the Use of Artificial Intelligence in Screening for Diabetic Retinopathy in Trinidad and Tobago.
  
    Ramoutar R
    
    
    Cureus. 2024; 16(3):e55745.
  
  
    PMID: 38586698
    
          PMC: 10999161.
    
          DOI: 10.7759/cureus.55745.