» Articles » PMID: 34698550

Mitochondrial Calcium Exchange in Physiology and Disease

Overview
Journal Physiol Rev
Specialty Physiology
Date 2021 Oct 26
PMID 34698550
Citations 113
Authors
Affiliations
Soon will be listed here.
Abstract

The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (Ca) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for Ca exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of Ca transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of Ca flux and evaluate how alterations in Ca homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant Ca handling and by summarizing critical unanswered questions regarding the biology of Ca flux.

Citing Articles

Redox regulation: mechanisms, biology and therapeutic targets in diseases.

Li B, Ming H, Qin S, Nice E, Dong J, Du Z Signal Transduct Target Ther. 2025; 10(1):72.

PMID: 40050273 PMC: 11885647. DOI: 10.1038/s41392-024-02095-6.


Mitochondrial dysfunction is a hallmark of woody breast myopathy in broiler chickens.

Greene E, Chen P, Walk C, Bedford M, Dridi S Front Physiol. 2025; 16:1543788.

PMID: 40034536 PMC: 11872917. DOI: 10.3389/fphys.2025.1543788.


Platelets and mitochondria: the calcium connection.

Shehwar D, Barki S, Aliotta A, Calderara D, Veuthey L, Portela C Mol Biol Rep. 2025; 52(1):276.

PMID: 40029418 DOI: 10.1007/s11033-025-10389-3.


Disrupting the network of co-evolving amino terminal domain residues relieves mitochondrial calcium uptake inhibition by MCUb.

Colussi D, Grainger R, Noble M, Lake T, Junop M, Stathopulos P Comput Struct Biotechnol J. 2025; 27:190-213.

PMID: 40017731 PMC: 11867204. DOI: 10.1016/j.csbj.2024.12.007.


Sirtuin-1 Regulates Mitochondrial Calcium Uptake Through Mitochondrial Calcium Uptake 1 (MICU1).

Zhang X, Liu S, Su Y, Zhang L, Guo T, Wang X Life (Basel). 2025; 15(2).

PMID: 40003583 PMC: 11856031. DOI: 10.3390/life15020174.


References
1.
Logan C, Szabadkai G, Sharpe J, Parry D, Torelli S, Childs A . Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat Genet. 2013; 46(2):188-93. DOI: 10.1038/ng.2851. View

2.
Shamseldin H, Alasmari A, Salih M, Samman M, Mian S, Alshidi T . A null mutation in MICU2 causes abnormal mitochondrial calcium homeostasis and a severe neurodevelopmental disorder. Brain. 2017; 140(11):2806-2813. DOI: 10.1093/brain/awx237. View

3.
Nowikovsky K, Pozzan T, Rizzuto R, Scorrano L, Bernardi P . Perspectives on: SGP symposium on mitochondrial physiology and medicine: the pathophysiology of LETM1. J Gen Physiol. 2012; 139(6):445-54. PMC: 3362517. DOI: 10.1085/jgp.201110757. View

4.
Owen O, Kalhan S, Hanson R . The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002; 277(34):30409-12. DOI: 10.1074/jbc.R200006200. View

5.
Bernardi P, Azzone G . Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Eur J Biochem. 1983; 134(2):377-83. DOI: 10.1111/j.1432-1033.1983.tb07578.x. View