» Articles » PMID: 34691681

Molecular Grafting Towards High-fraction Active Nanodots Implanted in N-doped Carbon for Sodium Dual-ion Batteries

Overview
Journal Natl Sci Rev
Date 2021 Oct 25
PMID 34691681
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Sodium-based dual-ion batteries (Na-DIBs) show a promising potential for large-scale energy storage applications due to the merits of environmental friendliness and low cost. However, Na-DIBs are generally subject to poor rate capability and cycling stability for the lack of suitable anodes to accommodate large Na ions. Herein, we propose a molecular grafting strategy to synthesize tin pyrophosphate nanodots implanted in N-doped carbon matrix (SnPO@N-C), which exhibits a high fraction of active SnPO up to 95.6 wt% and a low content of N-doped carbon (4.4 wt%) as the conductive framework. As a result, this anode delivers a high specific capacity ∼400 mAh g at 0.1 A g, excellent rate capability up to 5.0 A g and excellent cycling stability with a capacity retention of 92% after 1200 cycles under a current density of 1.5 A g. Further, pairing this anode with an environmentally friendly KS6 graphite cathode yields a SnPO@N-C||KS6 Na-DIB, exhibiting an excellent rate capability up to 30 C, good fast-charge/slow-discharge performance and long-term cycling life with a capacity retention of ∼96% after 1000 cycles at 20 C. This study provides a feasible strategy to develop high-performance anodes with high-fraction active materials for Na-based energy storage applications.

Citing Articles

Interplay of Na Substitution in Magnetic Interaction and Photocatalytic Properties of CaNaTiTaO Perovskite Nanoparticles.

Kammar S, Barote V, Gaikwad A, Shirsath S, Ibrahim A, Batoo K ChemistryOpen. 2024; 13(10):e202400021.

PMID: 39212271 PMC: 11457761. DOI: 10.1002/open.202400021.


Strategies for improving cathode electrolyte interphase in high-performance dual-ion batteries.

He Y, Chen Z, Zhang Y iScience. 2024; 27(8):110491.

PMID: 39171291 PMC: 11338147. DOI: 10.1016/j.isci.2024.110491.


Bandgap Engineering and Enhancing Optoelectronic Performance of a Lead-Free Double Perovskite CsAgBiBr Solar Cell via Al Doping.

Ullah A, Khan M, Ihtisham-Ul-Haq , Almutairi B, N AlResheedi D, Choi J ACS Omega. 2024; 9(16):18202-18211.

PMID: 38680326 PMC: 11044255. DOI: 10.1021/acsomega.3c10388.


Recent Advances in Carbon Nanotube Utilization in Perovskite Solar Cells: A Review.

Asghar U, Qamar M, Hakami O, Ali S, Imran M, Farhan A Micromachines (Basel). 2024; 15(4).

PMID: 38675340 PMC: 11051801. DOI: 10.3390/mi15040529.


Physical properties of ferromagnetic Mn-doped double perovskites (DPs) CsAgInCl/Br for spintronics and solar cell devices: DFT calculations.

Noor N, Tahir W, Mumtaz S, Elansary H RSC Adv. 2024; 14(14):9497-9508.

PMID: 38516157 PMC: 10953807. DOI: 10.1039/d4ra00754a.


References
1.
Ma R, Fan L, Chen S, Wei Z, Yang Y, Yang H . Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries. ACS Appl Mater Interfaces. 2018; 10(18):15751-15759. DOI: 10.1021/acsami.8b03648. View

2.
Xu Z, Yoon G, Park K, Park H, Tamwattana O, Kim S . Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nat Commun. 2019; 10(1):2598. PMC: 6565630. DOI: 10.1038/s41467-019-10551-z. View

3.
Kravchyk K, Bhauriyal P, Piveteau L, Guntlin C, Pathak B, Kovalenko M . High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide. Nat Commun. 2018; 9(1):4469. PMC: 6203722. DOI: 10.1038/s41467-018-06923-6. View

4.
Song T, Yao W, Kiadkhunthod P, Zheng Y, Wu N, Zhou X . A Low-Cost and Environmentally Friendly Mixed Polyanionic Cathode for Sodium-Ion Storage. Angew Chem Int Ed Engl. 2019; 59(2):740-745. DOI: 10.1002/anie.201912272. View

5.
Liu Y, Zhang N, Jiao L, Chen J . Tin Nanodots Encapsulated in Porous Nitrogen-Doped Carbon Nanofibers as a Free-Standing Anode for Advanced Sodium-Ion Batteries. Adv Mater. 2015; 27(42):6702-7. DOI: 10.1002/adma.201503015. View