» Articles » PMID: 34647157

Recent Advances in Sensitivity Enhancement for Lateral Flow Assay

Overview
Journal Mikrochim Acta
Specialties Biotechnology
Chemistry
Date 2021 Oct 14
PMID 34647157
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Conventional lateral flow assay (LFA) is typically performed by observing the color changes in the test lines by naked eyes, which achieves considerable commercial success and has a significant impact on the fields of food safety, environment monitoring, disease diagnosis, and other applications. However, this qualitative detection method is not very suitable for low levels of disease biomarkers' detection. Although many nanomaterials are used as new labels for LFA, additional readers limit their application to some extent. Fortunately, a lot of work has been done for improving the sensitivity of LFA. In this review, currently reported LFA sensitivity enhancement methods with an objective evaluation are summarized, such as sample pretreatment, the change of flow rate, and label evolution, and future development direction and challenges of LFAs are discussed.

Citing Articles

Advancements in nanobiosensor technologies for in-vitro diagnostics to point of care testing.

Kim C, Kang M, Raja I, Joung Y, Han D Heliyon. 2024; 10(22):e40306.

PMID: 39624329 PMC: 11609235. DOI: 10.1016/j.heliyon.2024.e40306.


Resilient sustainable current and emerging technologies for foodborne pathogen detection.

Bhowmik D, Rickard J, Jelinek R, Goldberg Oppenheimer P Sustain Food Technol. 2024; 3(1):10-31.

PMID: 39359621 PMC: 11443698. DOI: 10.1039/d4fb00192c.


Lateral flow assay sensitivity and signal enhancement via laser µ-machined constrains in nitrocellulose membrane.

Khatmi G, Klinavicius T, Simanavicius M, Silimavicius L, Tamuleviciene A, Rimkute A Sci Rep. 2024; 14(1):22936.

PMID: 39358489 PMC: 11446913. DOI: 10.1038/s41598-024-74407-3.


Plasmonic nanoparticle sensors: current progress, challenges, and future prospects.

Kant K, Beeram R, Cao Y, Dos Santos P, Gonzalez-Cabaleiro L, Garcia-Lojo D Nanoscale Horiz. 2024; 9(12):2085-2166.

PMID: 39240539 PMC: 11378978. DOI: 10.1039/d4nh00226a.


Lateral flow assays: Progress and evolution of recent trends in point-of-care applications.

Kakkar S, Gupta P, Singh Yadav S, Raj D, Singh G, Chauhan S Mater Today Bio. 2024; 28:101188.

PMID: 39221210 PMC: 11364909. DOI: 10.1016/j.mtbio.2024.101188.


References
1.
Hu J, Wang Y, Su H, Ding H, Sun X, Gao H . Rapid analysis of Escherichia coli O157:H7 using isothermal recombinase polymerase amplification combined with triple-labeled nucleotide probes. Mol Cell Probes. 2019; 50:101501. DOI: 10.1016/j.mcp.2019.101501. View

2.
Zhang W, Hao W, Liu X, Sun X, Yan J, Wang Y . Visual detection of miRNAs using enzyme-free amplification reactions and ratiometric fluorescent probes. Talanta. 2020; 219:121332. DOI: 10.1016/j.talanta.2020.121332. View

3.
Blanco-Covian L, Montes-Garcia V, Girard A, Fernandez-Abedul M, Perez-Juste J, Pastoriza-Santos I . Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. Nanoscale. 2017; 9(5):2051-2058. DOI: 10.1039/c6nr08432j. View

4.
Chiu R, Jue E, Yip A, Berg A, Wang S, Kivnick A . Simultaneous concentration and detection of biomarkers on paper. Lab Chip. 2014; 14(16):3021-8. DOI: 10.1039/c4lc00532e. View

5.
Liu M, Hui C, Zhang Q, Gu J, Kannan B, Jahanshahi-Anbuhi S . Target-Induced and Equipment-Free DNA Amplification with a Simple Paper Device. Angew Chem Int Ed Engl. 2016; 55(8):2709-13. DOI: 10.1002/anie.201509389. View