» Articles » PMID: 34637749

Functional Architecture of Neural Circuits for Leg Proprioception in Drosophila

Overview
Journal Curr Biol
Publisher Cell Press
Specialty Biology
Date 2021 Oct 12
PMID 34637749
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

To effectively control their bodies, animals rely on feedback from proprioceptive mechanosensory neurons. In the Drosophila leg, different proprioceptor subtypes monitor joint position, movement direction, and vibration. Here, we investigate how these diverse sensory signals are integrated by central proprioceptive circuits. We find that signals for leg joint position and directional movement converge in second-order neurons, revealing pathways for local feedback control of leg posture. Distinct populations of second-order neurons integrate tibia vibration signals across pairs of legs, suggesting a role in detecting external substrate vibration. In each pathway, the flow of sensory information is dynamically gated and sculpted by inhibition. Overall, our results reveal parallel pathways for processing of internal and external mechanosensory signals, which we propose mediate feedback control of leg movement and vibration sensing, respectively. The existence of a functional connectivity map also provides a resource for interpreting connectomic reconstruction of neural circuits for leg proprioception.

Citing Articles

Miniature linear and split-belt treadmills reveal mechanisms of adaptive motor control in walking Drosophila.

Pratt B, Lee S, Chou G, Tuthill J Curr Biol. 2024; 34(19):4368-4381.e5.

PMID: 39216486 PMC: 11461123. DOI: 10.1016/j.cub.2024.08.006.


Connectomic reconstruction of a female Drosophila ventral nerve cord.

Azevedo A, Lesser E, Phelps J, Mark B, Elabbady L, Kuroda S Nature. 2024; 631(8020):360-368.

PMID: 38926570 PMC: 11348827. DOI: 10.1038/s41586-024-07389-x.


Inhibitory circuits generate rhythms for leg movements during grooming.

Syed D, Ravbar P, Simpson J bioRxiv. 2024; .

PMID: 38895414 PMC: 11185647. DOI: 10.1101/2024.06.05.597468.


Divergent neural circuits for proprioceptive and exteroceptive sensing of the leg.

Lee S, Dallmann C, Cook A, Tuthill J, Agrawal S bioRxiv. 2024; .

PMID: 38712128 PMC: 11071415. DOI: 10.1101/2024.04.23.590808.


A missense mutation in human INSC causes peripheral neuropathy.

Yeh J, Chao H, Hong C, Hung Y, Tzou F, Hsiao C EMBO Mol Med. 2024; 16(5):1091-1114.

PMID: 38589651 PMC: 11099080. DOI: 10.1038/s44321-024-00062-w.


References
1.
Scheffer L, Xu C, Januszewski M, Lu Z, Takemura S, Hayworth K . A connectome and analysis of the adult central brain. Elife. 2020; 9. PMC: 7546738. DOI: 10.7554/eLife.57443. View

2.
Schneider-Mizell C, Gerhard S, Longair M, Kazimiers T, Li F, Zwart M . Quantitative neuroanatomy for connectomics in Drosophila. Elife. 2016; 5. PMC: 4811773. DOI: 10.7554/eLife.12059. View

3.
Shepherd D, Sahota V, Court R, Williams D, Truman J . Developmental organization of central neurons in the adult Drosophila ventral nervous system. J Comp Neurol. 2019; 527(15):2573-2598. DOI: 10.1002/cne.24690. View

4.
Bidaye S, Bockemuhl T, Buschges A . Six-legged walking in insects: how CPGs, peripheral feedback, and descending signals generate coordinated and adaptive motor rhythms. J Neurophysiol. 2017; 119(2):459-475. DOI: 10.1152/jn.00658.2017. View

5.
Nern A, Pfeiffer B, Rubin G . Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci U S A. 2015; 112(22):E2967-76. PMC: 4460454. DOI: 10.1073/pnas.1506763112. View