» Articles » PMID: 34585526

β-Catenin Limits Osteogenesis on Regenerative Materials in a Stiffness-Dependent Manner

Overview
Date 2021 Sep 29
PMID 34585526
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Targeted refinement of regenerative materials requires mechanistic understanding of cell-material interactions. The nanoparticulate mineralized collagen glycosaminoglycan (MC-GAG) scaffold is shown to promote skull regeneration in vivo without additive exogenous growth factors or progenitor cells, suggesting potential for clinical translation. This work evaluates modulation of MC-GAG stiffness on canonical Wnt (cWnt) signaling. Primary human bone marrow-derived mesenchymal stem cells (hMSCs) are differentiated on two MC-GAG scaffolds (noncrosslinked, NX-MC, 0.3 kPa vs conventionally crosslinked, MC, 3.9 kPa). hMSCs increase expression of activated β-catenin, the major cWnt intracellular mediator, and the mechanosensitive YAP protein with near complete subcellular colocalization on stiffer MC scaffolds. Overall Wnt pathway inhibition reduces activated β-catenin and osteogenic differentiation, while elevating BMP4 and phosphorylated Smad1/5 (p-Smad1/5) expression on MC, but not NX-MC. Unlike Wnt pathway downregulation, isolated canonical Wnt inhibition with β-catenin knockdown increases osteogenic differentiation and mineralization specifically on the stiffer MC. β-catenin knockdown also increases p-Smad1/5, Runx2, and BMP4 expression only on the stiffer MC material. Thus, while stiffness-induced activation of the Wnt and mechanotransduction pathways promotes osteogenesis on MC-GAG, activated β-catenin is a limiting agent and may serve as a useful target or readout for optimal modulation of stiffness in skeletal regenerative materials.

Citing Articles

Non-immune factors cause prolonged myofibroblast phenotype in implanted synthetic heart valve scaffolds.

Snyder Y, Mann F, Middleton J, Murashita T, Carney J, Bianco R Appl Mater Today. 2024; 39.

PMID: 39131741 PMC: 11308761. DOI: 10.1016/j.apmt.2024.102323.


Correlating Material Properties to Osteoprotegerin Expression on Nanoparticulate Mineralized Collagen Glycosaminoglycan Scaffolds.

Chen W, Bedar M, Zhou Q, Ren X, Kang Y, Huang K Adv Healthc Mater. 2024; 13(26):e2401037.

PMID: 38885525 PMC: 11489015. DOI: 10.1002/adhm.202401037.


Runx2 and Polycystins in Bone Mechanotransduction: Challenges for Therapeutic Opportunities.

Gargalionis A, Adamopoulos C, Vottis C, Papavassiliou A, Basdra E Int J Mol Sci. 2024; 25(10).

PMID: 38791330 PMC: 11121608. DOI: 10.3390/ijms25105291.


Recent progresses in neural tissue engineering using topographic scaffolds.

Han S, Zhao X, Cheng L, Fan J Am J Stem Cells. 2024; 13(1):1-26.

PMID: 38505822 PMC: 10944707.


Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design.

LaGuardia J, Shariati K, Bedar M, Ren X, Moghadam S, Huang K Adv Healthc Mater. 2023; 12(27):e2301081.

PMID: 37380172 PMC: 10615747. DOI: 10.1002/adhm.202301081.


References
1.
Molenaar M, van de Wetering M, Oosterwegel M, Peterson-Maduro J, Godsave S, Korinek V . XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell. 1996; 86(3):391-9. DOI: 10.1016/s0092-8674(00)80112-9. View

2.
de Boer J, Siddappa R, Gaspar C, van Apeldoorn A, Fodde R, van Blitterswijk C . Wnt signaling inhibits osteogenic differentiation of human mesenchymal stem cells. Bone. 2004; 34(5):818-26. DOI: 10.1016/j.bone.2004.01.016. View

3.
Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S . Role of TAZ as mediator of Wnt signaling. Cell. 2012; 151(7):1443-56. DOI: 10.1016/j.cell.2012.11.027. View

4.
Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M . Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474(7350):179-83. DOI: 10.1038/nature10137. View

5.
Du J, Zu Y, Li J, Du S, Xu Y, Zhang L . Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep. 2016; 6:20395. PMC: 4745056. DOI: 10.1038/srep20395. View