» Articles » PMID: 34573884

Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging

Abstract

Short tau inversion recovery (STIR) sequences are frequently used in magnetic resonance imaging (MRI) of the spine. However, STIR sequences require a significant amount of scanning time. The purpose of the present study was to generate virtual STIR (vSTIR) images from non-contrast, non-fat-suppressed T1- and T2-weighted images using a conditional generative adversarial network (cGAN). The training dataset comprised 612 studies from 514 patients, and the validation dataset comprised 141 studies from 133 patients. For validation, 100 original STIR and respective vSTIR series were presented to six senior radiologists (blinded for the STIR type) in independent A/B-testing sessions. Additionally, for 141 real or vSTIR sequences, the testers were required to produce a structured report of 15 different findings. In the A/B-test, most testers could not reliably identify the real STIR (mean error of tester 1-6: 41%; 44%; 58%; 48%; 39%; 45%). In the evaluation of the structured reports, vSTIR was equivalent to real STIR in 13 of 15 categories. In the category of the number of STIR hyperintense vertebral bodies ( = 0.08) and in the diagnosis of bone metastases ( = 0.055), the vSTIR was only slightly insignificantly equivalent. By virtually generating STIR images of diagnostic quality from T1- and T2-weighted images using a cGAN, one can shorten examination times and increase throughput.

Citing Articles

Generating synthetic high-resolution spinal STIR and T1w images from T2w FSE and low-resolution axial Dixon.

Graf R, Platzek P, Riedel E, Kim S, Lenhart N, Ramschutz C Eur Radiol. 2024; .

PMID: 39231829 DOI: 10.1007/s00330-024-11047-1.


Conversion of T2-Weighted Magnetic Resonance Images of Cervical Spine Trauma to Short T1 Inversion Recovery (STIR) Images by Generative Adversarial Network.

Yunde A, Maki S, Furuya T, Okimatsu S, Inoue T, Miura M Cureus. 2024; 16(5):e60381.

PMID: 38883049 PMC: 11178942. DOI: 10.7759/cureus.60381.


Denoising diffusion-based MRI to CT image translation enables automated spinal segmentation.

Graf R, Schmitt J, Schlaeger S, Moller H, Sideri-Lampretsa V, Sekuboyina A Eur Radiol Exp. 2023; 7(1):70.

PMID: 37957426 PMC: 10643734. DOI: 10.1186/s41747-023-00385-2.


Deep Learning-Generated Synthetic MR Imaging STIR Spine Images Are Superior in Image Quality and Diagnostically Equivalent to Conventional STIR: A Multicenter, Multireader Trial.

Tanenbaum L, Bash S, Zaharchuk G, Shankaranarayanan A, Chamberlain R, Wintermark M AJNR Am J Neuroradiol. 2023; 44(8):987-993.

PMID: 37414452 PMC: 10411840. DOI: 10.3174/ajnr.A7920.


One Model to Synthesize Them All: Multi-Contrast Multi-Scale Transformer for Missing Data Imputation.

Liu J, Pasumarthi S, Duffy B, Gong E, Datta K, Zaharchuk G IEEE Trans Med Imaging. 2023; 42(9):2577-2591.

PMID: 37030684 PMC: 10543020. DOI: 10.1109/TMI.2023.3261707.


References
1.
Yu L, Wang X, Lin X, Wang Y . The Use of Lumbar Spine Magnetic Resonance Imaging in Eastern China: Appropriateness and Related Factors. PLoS One. 2016; 11(1):e0146369. PMC: 4701169. DOI: 10.1371/journal.pone.0146369. View

2.
Kleesiek J, Morshuis J, Isensee F, Deike-Hofmann K, Paech D, Kickingereder P . Can Virtual Contrast Enhancement in Brain MRI Replace Gadolinium?: A Feasibility Study. Invest Radiol. 2019; 54(10):653-660. DOI: 10.1097/RLI.0000000000000583. View

3.
Yang Y, Yan L, Zhang X, Han Y, Nan H, Hu Y . Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning. Front Neurosci. 2018; 12:804. PMC: 6250094. DOI: 10.3389/fnins.2018.00804. View

4.
Kumar Y, Hayashi D . Role of magnetic resonance imaging in acute spinal trauma: a pictorial review. BMC Musculoskelet Disord. 2016; 17:310. PMC: 4957861. DOI: 10.1186/s12891-016-1169-6. View

5.
Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X . Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE Trans Med Imaging. 2018; 37(6):1348-1357. PMC: 6021013. DOI: 10.1109/TMI.2018.2827462. View