» Articles » PMID: 34552069

Quantum Fluids of Light in All-optical Scatterer Lattices

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Sep 23
PMID 34552069
Citations 3
Authors
Affiliations
Soon will be listed here.
Abstract

One of the recently established paradigms in condensed matter physics is examining a system's behaviour in artificial potentials, giving insight into phenomena of quantum fluids in hard-to-reach settings. A prominent example is the matter-wave scatterer lattice, where high energy matter waves undergo transmission and reflection through narrow width barriers leading to stringent phase matching conditions with lattice band formation. In contrast to evanescently coupled lattice sites, the realisation of a scatterer lattice for macroscopic matter-wave fluids has remained elusive. Here, we implement a system of exciton-polariton condensates in a non-Hermitian Lieb lattice of scatterer potentials. By fine tuning the lattice parameters, we reveal a nonequilibrium phase transition between distinct regimes of polariton condensation: a scatterer lattice of gain guided polaritons condensing on the lattice potential maxima, and trapped polaritons condensing in the potential minima. Our results pave the way towards unexplored physics of non-Hermitian fluids in non-stationary mixtures of confined and freely expanding waves.

Citing Articles

Dirac exciton-polariton condensates in photonic crystal gratings.

Sigurdsson H, Nguyen H, Nguyen H Nanophotonics. 2024; 13(18):3503-3518.

PMID: 39185487 PMC: 11341133. DOI: 10.1515/nanoph-2023-0834.


Antiferromagnetic Ising model in a triangular vortex lattice of quantum fluids of light.

Alyatkin S, Milian C, Kartashov Y, Sitnik K, Gnusov I, Topfer J Sci Adv. 2024; 10(34):eadj1589.

PMID: 39178267 PMC: 11343025. DOI: 10.1126/sciadv.adj1589.


Asynchronous locking in metamaterials of fluids of light and sound.

Chafatinos D, Kuznetsov A, Reynoso A, Usaj G, Sesin P, Papuccio I Nat Commun. 2023; 14(1):3485.

PMID: 37336923 PMC: 10279768. DOI: 10.1038/s41467-023-38788-9.

References
1.
Slot M, Gardenier T, Jacobse P, van Miert G, Kempkes S, Zevenhuizen S . Experimental realization and characterization of an electronic Lieb lattice. Nat Phys. 2017; 13(7):672-676. PMC: 5503127. DOI: 10.1038/nphys4105. View

2.
Alyatkin S, Topfer J, Askitopoulos A, Sigurdsson H, Lagoudakis P . Optical Control of Couplings in Polariton Condensate Lattices. Phys Rev Lett. 2020; 124(20):207402. DOI: 10.1103/PhysRevLett.124.207402. View

3.
Wang S, Scarabelli D, Du L, Kuznetsova Y, Pfeiffer L, West K . Observation of Dirac bands in artificial graphene in small-period nanopatterned GaAs quantum wells. Nat Nanotechnol. 2017; 13(1):29-33. DOI: 10.1038/s41565-017-0006-x. View

4.
Cristofolini P, Dreismann A, Christmann G, Franchetti G, Berloff N, Tsotsis P . Optical superfluid phase transitions and trapping of polariton condensates. Phys Rev Lett. 2013; 110(18):186403. DOI: 10.1103/PhysRevLett.110.186403. View

5.
Pickup L, Sigurdsson H, Ruostekoski J, Lagoudakis P . Synthetic band-structure engineering in polariton crystals with non-Hermitian topological phases. Nat Commun. 2020; 11(1):4431. PMC: 7474071. DOI: 10.1038/s41467-020-18213-1. View