» Articles » PMID: 39185487

Dirac Exciton-polariton Condensates in Photonic Crystal Gratings

Overview
Journal Nanophotonics
Publisher De Gruyter
Date 2024 Aug 26
PMID 39185487
Authors
Affiliations
Soon will be listed here.
Abstract

Bound states in the continuum have recently been utilized in photonic crystal gratings to achieve strong coupling and ultralow threshold condensation of exciton-polariton quasiparticles with atypical Dirac-like features in their dispersion relation. Here, we develop the single- and many-body theory of these new effective relativistic polaritonic modes and describe their mean-field condensation dynamics facilitated by the interplay between protection from the radiative continuum and negative-mass optical trapping. Our theory accounts for tunable grating parameters giving full control over the diffractive coupling properties between guided polaritons and the radiative continuum, unexplored for polariton condensates. In particular, we discover stable cyclical condensate solutions mimicking a driven-dissipative analog of the effect characterized by coherent superposition of ballistic and trapped polariton waves. We clarify important distinctions between the polariton nearfield and farfield explaining recent experiments on the emission characteristics of these long lived nonlinear Dirac polaritons.

Citing Articles

Hybrid Plasmonic Symmetry-Protected Bound state in the Continuum Entering the Zeptomolar Biodetection Range.

Clabassi E, Balestra G, Siciliano G, Polimeno L, Tarantini I, Primiceri E Small. 2025; 21(10):e2411827.

PMID: 39865919 PMC: 11899489. DOI: 10.1002/smll.202411827.


New frontiers in nonlinear nanophotonics.

Bogdanov A, Makarov S, Kivshar Y Nanophotonics. 2024; 13(18):3175-3179.

PMID: 39634821 PMC: 11501273. DOI: 10.1515/nanoph-2024-0396.

References
1.
Nguyen H, Dubois F, Deschamps T, Cueff S, Pardon A, Leclercq J . Symmetry Breaking in Photonic Crystals: On-Demand Dispersion from Flatband to Dirac Cones. Phys Rev Lett. 2018; 120(6):066102. DOI: 10.1103/PhysRevLett.120.066102. View

2.
Tercas H, Flayac H, Solnyshkov D, Malpuech G . Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys Rev Lett. 2014; 112(6):066402. DOI: 10.1103/PhysRevLett.112.066402. View

3.
Riminucci F, Gianfrate A, Nigro D, Ardizzone V, Dhuey S, Francaviglia L . Polariton Condensation in Gap-Confined States of Photonic Crystal Waveguides. Phys Rev Lett. 2024; 131(24):246901. DOI: 10.1103/PhysRevLett.131.246901. View

4.
Kravtsov V, Khestanova E, Benimetskiy F, Ivanova T, Samusev A, Sinev I . Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci Appl. 2020; 9:56. PMC: 7145813. DOI: 10.1038/s41377-020-0286-z. View

5.
Li M, Sinev I, Benimetskiy F, Ivanova T, Khestanova E, Kiriushechkina S . Experimental observation of topological Z exciton-polaritons in transition metal dichalcogenide monolayers. Nat Commun. 2021; 12(1):4425. PMC: 8292485. DOI: 10.1038/s41467-021-24728-y. View