» Articles » PMID: 34547290

A New Carbohydrate-active Oligosaccharide Dehydratase is Involved in the Degradation of Ulvan

Overview
Journal J Biol Chem
Specialty Biochemistry
Date 2021 Sep 21
PMID 34547290
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Δ-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoA-Rha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharides into monosaccharides.

Citing Articles

Ulvan and Ulva oligosaccharides: a systematic review of structure, preparation, biological activities and applications.

Li C, Tang T, Du Y, Jiang L, Yao Z, Ning L Bioresour Bioprocess. 2024; 10(1):66.

PMID: 38647949 PMC: 10991135. DOI: 10.1186/s40643-023-00690-z.


Unique alcohol dehydrogenases involved in algal sugar utilization by marine bacteria.

Brott S, Nam K, Thomas F, Dutschei T, Reisky L, Behrens M Appl Microbiol Biotechnol. 2023; 107(7-8):2363-2384.

PMID: 36881117 PMC: 10033563. DOI: 10.1007/s00253-023-12447-x.


Metabolic engineering enables Bacillus licheniformis to grow on the marine polysaccharide ulvan.

Dutschei T, Zuhlke M, Welsch N, Eisenack T, Hilkmann M, Krull J Microb Cell Fact. 2022; 21(1):207.

PMID: 36217189 PMC: 9549685. DOI: 10.1186/s12934-022-01931-0.


Functional metagenomic screening identifies an unexpected β-glucuronidase.

Neun S, Brear P, Campbell E, Tryfona T, El Omari K, Wagner A Nat Chem Biol. 2022; 18(10):1096-1103.

PMID: 35799064 DOI: 10.1038/s41589-022-01071-x.


Marine Polysaccharides: Occurrence, Enzymatic Degradation and Utilization.

Baumgen M, Dutschei T, Bornscheuer U Chembiochem. 2021; 22(13):2247-2256.

PMID: 33890358 PMC: 8360166. DOI: 10.1002/cbic.202100078.

References
1.
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T . ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016; 44(W1):W344-50. PMC: 4987940. DOI: 10.1093/nar/gkw408. View

2.
Robic A, Gaillard C, Sassi J, Lerat Y, Lahaye M . Ultrastructure of ulvan: a polysaccharide from green seaweeds. Biopolymers. 2009; 91(8):652-64. DOI: 10.1002/bip.21195. View

3.
Somoza J, Menon S, Schmidt H, Joseph-McCarthy D, Dessen A, Stahl M . Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose. Structure. 2000; 8(2):123-35. DOI: 10.1016/s0969-2126(00)00088-5. View

4.
Reisky L, Prechoux A, Zuhlke M, Baumgen M, Robb C, Gerlach N . A marine bacterial enzymatic cascade degrades the algal polysaccharide ulvan. Nat Chem Biol. 2019; 15(8):803-812. DOI: 10.1038/s41589-019-0311-9. View

5.
Konasani V, Jin C, Karlsson N, Albers E . A novel ulvan lyase family with broad-spectrum activity from the ulvan utilisation loci of Formosa agariphila KMM 3901. Sci Rep. 2018; 8(1):14713. PMC: 6168547. DOI: 10.1038/s41598-018-32922-0. View