» Articles » PMID: 34535646

Structural Basis of RNA Polymerase Inhibition by Viral and Host Factors

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Sep 18
PMID 34535646
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

RNA polymerase inhibition plays an important role in the regulation of transcription in response to environmental changes and in the virus-host relationship. Here we present the high-resolution structures of two such RNAP-inhibitor complexes that provide the structural bases underlying RNAP inhibition in archaea. The Acidianus two-tailed virus encodes the RIP factor that binds inside the DNA-binding channel of RNAP, inhibiting transcription by occlusion of binding sites for nucleic acid and the transcription initiation factor TFB. Infection with the Sulfolobus Turreted Icosahedral Virus induces the expression of the host factor TFS4, which binds in the RNAP funnel similarly to eukaryotic transcript cleavage factors. However, TFS4 allosterically induces a widening of the DNA-binding channel which disrupts trigger loop and bridge helix motifs. Importantly, the conformational changes induced by TFS4 are closely related to inactivated states of RNAP in other domains of life indicating a deep evolutionary conservation of allosteric RNAP inhibition.

Citing Articles

Computational analysis of the effect of a binding protein (RbpA) on the dynamics of Mycobacterium tuberculosis RNA polymerase assembly.

Bheemireddy S, Sowdhamini R, Srinivasan N PLoS One. 2025; 20(1):e0317187.

PMID: 39883746 PMC: 11781615. DOI: 10.1371/journal.pone.0317187.


Structural basis of RNA polymerase complexes in African swine fever virus.

Zhu G, Xi F, Zeng W, Zhao Y, Cao W, Liu C Nat Commun. 2025; 16(1):501.

PMID: 39779680 PMC: 11711665. DOI: 10.1038/s41467-024-55683-z.


Structural insights into distinct mechanisms of RNA polymerase II and III recruitment to snRNA promoters.

Shah S, Perry T, Graziadei A, Cecatiello V, Kaliyappan T, Misiaszek A Nat Commun. 2025; 16(1):141.

PMID: 39747245 PMC: 11696126. DOI: 10.1038/s41467-024-55553-8.


A pangenome analysis of ESKAPE bacteriophages: the underrepresentation may impact machine learning models.

Lee J, Hunter B, Shim H Front Mol Biosci. 2024; 11:1395450.

PMID: 38974320 PMC: 11224154. DOI: 10.3389/fmolb.2024.1395450.


Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.

Tarau D, Grunberger F, Pilsl M, Reichelt R, Heiss F, Konig S Nucleic Acids Res. 2024; 52(10):6017-6035.

PMID: 38709902 PMC: 11162788. DOI: 10.1093/nar/gkae282.


References
1.
Fouqueau T, Blombach F, Hartman R, Cheung A, Young M, Werner F . The transcript cleavage factor paralogue TFS4 is a potent RNA polymerase inhibitor. Nat Commun. 2017; 8(1):1914. PMC: 5715097. DOI: 10.1038/s41467-017-02081-3. View

2.
Fernandez-Tornero C, Moreno-Morcillo M, Rashid U, Taylor N, Ruiz F, Gruene T . Crystal structure of the 14-subunit RNA polymerase I. Nature. 2013; 502(7473):644-9. DOI: 10.1038/nature12636. View

3.
Esyunina D, Agapov A, Kulbachinskiy A . Regulation of transcriptional pausing through the secondary channel of RNA polymerase. Proc Natl Acad Sci U S A. 2016; 113(31):8699-704. PMC: 4978235. DOI: 10.1073/pnas.1603531113. View

4.
Wojtas M, Mogni M, Millet O, Bell S, Abrescia N . Structural and functional analyses of the interaction of archaeal RNA polymerase with DNA. Nucleic Acids Res. 2012; 40(19):9941-52. PMC: 3479171. DOI: 10.1093/nar/gks692. View

5.
Engel C, Sainsbury S, Cheung A, Kostrewa D, Cramer P . RNA polymerase I structure and transcription regulation. Nature. 2013; 502(7473):650-5. DOI: 10.1038/nature12712. View