» Articles » PMID: 34530440

Sublamina-Specific Dynamics and Ultrastructural Heterogeneity of Layer 6 Excitatory Synaptic Boutons in the Adult Human Temporal Lobe Neocortex

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2021 Sep 16
PMID 34530440
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Synapses "govern" the computational properties of any given network in the brain. However, their detailed quantitative morphology is still rather unknown, particularly in humans. Quantitative 3D-models of synaptic boutons (SBs) in layer (L)6a and L6b of the temporal lobe neocortex (TLN) were generated from biopsy samples after epilepsy surgery using fine-scale transmission electron microscopy, 3D-volume reconstructions and electron microscopic tomography. Beside the overall geometry of SBs, the size of active zones (AZs) and that of the three pools of synaptic vesicles (SVs) were quantified. SBs in L6 of the TLN were middle-sized (~5 μm2), the majority contained only a single but comparatively large AZ (~0.20 μm2). SBs had a total pool of ~1100 SVs with comparatively large readily releasable (RRP, ~10 SVs L6a), (RRP, ~15 SVs L6b), recycling (RP, ~150 SVs), and resting (~900 SVs) pools. All pools showed a remarkably large variability suggesting a strong modulation of short-term synaptic plasticity. In conclusion, L6 SBs are highly reliable in synaptic transmission within the L6 network in the TLN and may act as "amplifiers," "integrators" but also as "discriminators" for columnar specific, long-range extracortical and cortico-thalamic signals from the sensory periphery.

Citing Articles

Volume electron microscopy analysis of synapses in primary regions of the human cerebral cortex.

Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L Cereb Cortex. 2024; 34(8.

PMID: 39106175 PMC: 11302151. DOI: 10.1093/cercor/bhae312.


Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex.

Glausier J, Bouchet-Marquis C, Maier M, Banks-Tibbs T, Wu K, Ning J bioRxiv. 2024; .

PMID: 38463986 PMC: 10925168. DOI: 10.1101/2024.02.26.582174.


Distinctive biophysical features of human cell-types: insights from studies of neurosurgically resected brain tissue.

Chameh H, Falby M, Movahed M, Arbabi K, Rich S, Zhang L Front Synaptic Neurosci. 2023; 15:1250834.

PMID: 37860223 PMC: 10584155. DOI: 10.3389/fnsyn.2023.1250834.


3D synaptic organization of layer III of the human anterior cingulate and temporopolar cortex.

Cano-Astorga N, Plaza-Alonso S, DeFelipe J, Alonso-Nanclares L Cereb Cortex. 2023; 33(17):9691-9708.

PMID: 37455478 PMC: 10472499. DOI: 10.1093/cercor/bhad232.


Astroglial Connexin 43 Regulates Synaptic Vesicle Release at Hippocampal Synapses.

Cheung G, Chever O, Rollenhagen A, Quenechdu N, Ezan P, Lubke J Cells. 2023; 12(8).

PMID: 37190042 PMC: 10136730. DOI: 10.3390/cells12081133.


References
1.
Ghijsen W, Leenders A . Differential signaling in presynaptic neurotransmitter release. Cell Mol Life Sci. 2005; 62(9):937-54. DOI: 10.1007/s00018-004-4525-0. View

2.
Umeda T, Ebihara T, Okabe S . Simultaneous observation of stably associated presynaptic varicosities and postsynaptic spines: morphological alterations of CA3-CA1 synapses in hippocampal slice cultures. Mol Cell Neurosci. 2005; 28(2):264-74. DOI: 10.1016/j.mcn.2004.09.010. View

3.
Testa-Silva G, Verhoog M, Linaro D, de Kock C, Baayen J, Meredith R . High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biol. 2014; 12(11):e1002007. PMC: 4244038. DOI: 10.1371/journal.pbio.1002007. View

4.
Andjelic S, Gallopin T, Cauli B, Hill E, Roux L, Badr S . Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. J Neurophysiol. 2008; 101(2):641-54. PMC: 2657076. DOI: 10.1152/jn.91094.2008. View

5.
Schneggenburger R, Sakaba T, Neher E . Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci. 2002; 25(4):206-12. DOI: 10.1016/s0166-2236(02)02139-2. View