» Articles » PMID: 34522224

CD4+ T Cell-mimicking Nanoparticles Encapsulating DIABLO/SMAC Mimetics Broadly Neutralize HIV-1 and Selectively Kill HIV-1-infected Cells

Overview
Journal Theranostics
Date 2021 Sep 15
PMID 34522224
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

HIV-1 is a major global health challenge. The development of an effective vaccine and a therapeutic cure are top priorities. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 stymies this progress. Therapeutic strategies that provide effective and broad-spectrum neutralization against HIV-1 infection are highly desirable. We investigated the potential of nanoengineered CD4+ T cell membrane-coated nanoparticles (TNP) encapsulating the DIABLO/SMAC mimetics LCL-161 or AT-406 (also known as SM-406 or Debio 1143) to both neutralize HIV-1 and selectively kill HIV-1-infected resting CD4+ T cells and macrophages. DIABLO/SMAC mimetic-loaded TNP displayed outstanding neutralizing breadth and potency, and selectively kill HIV-1-infected cells via autophagy-dependent apoptosis while having no drug-induced off-target or cytotoxic effects on bystander cells. Genetic inhibition of early stages of autophagy abolishes this effect. DIABLO/SMAC mimetic loaded TNP have the potential to be used as therapeutic agents to neutralize cell-free HIV-1 and to kill specifically HIV-1-infected cells as part of an HIV-1 cure strategy.

Citing Articles

The Prospect of Biomimetic Immune Cell Membrane-Coated Nanomedicines for Treatment of Serious Bacterial Infections and Sepsis.

Hoffman A, Nizet V J Pharmacol Exp Ther. 2024; 389(3):289-300.

PMID: 38580449 PMC: 11125797. DOI: 10.1124/jpet.123.002095.


Molecular basis for nuclear accumulation and targeting of the inhibitor of apoptosis BIRC2.

Tencer A, Yu Y, Causse S, Campbell G, Klein B, Xuan H Nat Struct Mol Biol. 2023; 30(9):1265-1274.

PMID: 37524969 PMC: 10702411. DOI: 10.1038/s41594-023-01044-1.


Lymphocyte Membrane- and 12p1-Dual-Functionalized Nanoparticles for Free HIV-1 Trapping and Precise siRNA Delivery into HIV-1-Infected Cells.

Zhang J, Han J, Li H, Li Z, Zou P, Li J Adv Sci (Weinh). 2023; 10(10):e2300282.

PMID: 36755201 PMC: 10074117. DOI: 10.1002/advs.202300282.


mRNA nanomedicine: Design and recent applications.

Kubiatowicz L, Mohapatra A, Krishnan N, Fang R, Zhang L Exploration (Beijing). 2022; :20210217.

PMID: 36249890 PMC: 9539018. DOI: 10.1002/EXP.20210217.


Current strategies to induce selective killing of HIV-1-infected cells.

Campbell G, Spector S J Leukoc Biol. 2022; 112(5):1273-1284.

PMID: 35707952 PMC: 9613504. DOI: 10.1002/JLB.4MR0422-636R.


References
1.
Boliar S, Gludish D, Jambo K, Kamngona R, Mvaya L, Mwandumba H . Inhibition of the lncRNA SAF drives activation of apoptotic effector caspases in HIV-1-infected human macrophages. Proc Natl Acad Sci U S A. 2019; 116(15):7431-7438. PMC: 6462110. DOI: 10.1073/pnas.1818662116. View

2.
Varfolomeev E, Blankenship J, Wayson S, Fedorova A, Kayagaki N, Garg P . IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell. 2007; 131(4):669-81. DOI: 10.1016/j.cell.2007.10.030. View

3.
Kroll A, Jiang Y, Zhou J, Holay M, Fang R, Zhang L . Biomimetic Nanoparticle Vaccines for Cancer Therapy. Adv Biosyst. 2019; 3(1):e1800219. PMC: 6855307. DOI: 10.1002/adbi.201800219. View

4.
Wei X, Decker J, Liu H, Zhang Z, Arani R, Michael Kilby J . Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother. 2002; 46(6):1896-905. PMC: 127242. DOI: 10.1128/AAC.46.6.1896-1905.2002. View

5.
Calcagno A, Di Perri G, Bonora S . Pharmacokinetics and pharmacodynamics of antiretrovirals in the central nervous system. Clin Pharmacokinet. 2014; 53(10):891-906. DOI: 10.1007/s40262-014-0171-0. View