» Articles » PMID: 34506714

Protected -Acetyl Muramic Acid Probes Improve Bacterial Peptidoglycan Incorporation Via Metabolic Labeling

Overview
Journal ACS Chem Biol
Specialties Biochemistry
Biology
Date 2021 Sep 10
PMID 34506714
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Metabolic glycan probes have emerged as an excellent tool to investigate vital questions in biology. Recently, methodology to incorporate metabolic bacterial glycan probes into the cell wall of a variety of bacterial species has been developed. In order to improve this method, a scalable synthesis of the peptidoglycan precursors is developed here, allowing for access to essential peptidoglycan immunological fragments and cell wall building blocks. The question was asked if masking polar groups of the glycan probe would increase overall incorporation, a common strategy exploited in mammalian glycobiology. Here, we show, through cellular assays, that do not utilize peracetylated peptidoglycan substrates but do employ methyl esters. The 10-fold improvement of probe utilization indicates that (i) masking the carboxylic acid is favorable for transport and (ii) bacterial esterases are capable of removing the methyl ester for use in peptidoglycan biosynthesis. This investigation advances bacterial cell wall biology, offering a prescription on how to best deliver and utilize bacterial metabolic glycan probes.

Citing Articles

Bio-orthogonal Labeling of Chitin in Native Pathogenic Candida Species via the Chitin Scavenge Pathway.

Williams C, Carnahan B, Hyland S, DeMeester K, Grimes C J Am Chem Soc. 2025; 147(7):5632-5641.

PMID: 39925016 PMC: 11849683. DOI: 10.1021/jacs.4c11554.


Bacterial peptidoglycan as a living polymer.

El-Araby A, Fisher J, Mobashery S Curr Opin Chem Biol. 2024; 84:102562.

PMID: 39700530 PMC: 11788026. DOI: 10.1016/j.cbpa.2024.102562.


Evaluation and Comparison of vs Mammalian 6-O-Phospho-Kinases: Substrate Specificity and Applications.

Liu M, Williams C, Hyland S, Vasconcelos M, Carnahan B, Putnik R Biochemistry. 2024; 64(1):26-31.

PMID: 39661445 PMC: 11716661. DOI: 10.1021/acs.biochem.4c00525.


Bioluminescence-Based Determination of Cytosolic Accumulation of Antibiotics in .

Dash R, Holsinger K, Chordia M, Sharifian Gh M, Pires M ACS Infect Dis. 2024; 10(5):1602-1611.

PMID: 38592927 PMC: 11091882. DOI: 10.1021/acsinfecdis.3c00684.


Chemical biology tools to probe bacterial glycans.

Calles-Garcia D, Dube D Curr Opin Chem Biol. 2024; 80:102453.

PMID: 38582017 PMC: 11164641. DOI: 10.1016/j.cbpa.2024.102453.


References
1.
Yang X, McQuillen R, Lyu Z, Phillips-Mason P, De La Cruz A, McCausland J . A two-track model for the spatiotemporal coordination of bacterial septal cell wall synthesis revealed by single-molecule imaging of FtsW. Nat Microbiol. 2021; 6(5):584-593. PMC: 8085133. DOI: 10.1038/s41564-020-00853-0. View

2.
Green S, Wheelhouse K, Payne A, Hallett J, Miller P, Bull J . Thermal Stability and Explosive Hazard Assessment of Diazo Compounds and Diazo Transfer Reagents. Org Process Res Dev. 2020; 24(1):67-84. PMC: 6972035. DOI: 10.1021/acs.oprd.9b00422. View

3.
Smith G, WORREL C, SWANSON A . Inhibition of bacterial esterases by chloramphenicol. J Bacteriol. 1949; 58(6):803-9. PMC: 385707. DOI: 10.1128/jb.58.6.803-809.1949. View

4.
DeMeester K, Liang H, Zhou J, Wodzanowski K, Prather B, Santiago C . Metabolic Incorporation of N-Acetyl Muramic Acid Probes into Bacterial Peptidoglycan. Curr Protoc Chem Biol. 2019; 11(4):e74. PMC: 7591266. DOI: 10.1002/cpch.74. View

5.
Vollmer W, Blanot D, de Pedro M . Peptidoglycan structure and architecture. FEMS Microbiol Rev. 2008; 32(2):149-67. DOI: 10.1111/j.1574-6976.2007.00094.x. View