» Articles » PMID: 34492685

Clinical Features, Pathophysiology, and Therapy of Poor Graft Function Post-allogeneic Stem Cell Transplantation

Overview
Journal Blood Adv
Specialty Hematology
Date 2021 Sep 7
PMID 34492685
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Poor graft function (PGF), defined by the presence of multilineage cytopenias in the presence of 100% donor chimerism, is a serious complication of allogeneic stem cell transplant (alloSCT). Inducers or potentiators of alloimmunity such as cytomegalovirus reactivation and graft-versus-host disease are associated with the development of PGF, however, more clinical studies are required to establish further risk factors and describe outcomes of PGF. The pathophysiology of PGF can be conceptualized as dysfunction related to the number or productivity of the stem cell compartment, defects in bone marrow microenvironment components such as mesenchymal stromal cells and endothelial cells, or immunological suppression of post-alloSCT hematopoiesis. Treatment strategies focused on improving stem cell number and function and microenvironment support of hematopoiesis have been attempted with variable success. There has been limited use of immune manipulation as a therapeutic strategy, but emerging therapies hold promise. This review details the current understanding of the causes of PGF and methods of treatment to provide a framework for clinicians managing this complex problem.

Citing Articles

Luspatercept for the treatment of anemia in allo-HSCT for patients with hematological diseases.

Xin X, Zhang W, Li Z, Gui R, Wang J, Ji L Blood Cancer J. 2025; 15(1):12.

PMID: 39910033 PMC: 11799135. DOI: 10.1038/s41408-025-01218-8.


Definitions matter: Multicenter investigation of incidence and outcome of poor graft function after hematopoietic cell transplantation.

Muskens K, Collot-dEscury W, Dandis R, Haitjema S, Kuball J, de Witte M Hemasphere. 2024; 8(12):e70059.

PMID: 39691452 PMC: 11650888. DOI: 10.1002/hem3.70059.


The economic cost of care in poor graft function following allogeneic stem cell transplantation.

Juneja M, Prabahran A, Rawicki M, Chee L, Koldej R, Ritchie D Bone Marrow Transplant. 2024; 60(1):97-99.

PMID: 39448807 DOI: 10.1038/s41409-024-02452-7.


[Selected donor CD34(+) cell boosts for salvage treatment of poor graft function following allogeneic hematopoietic stem cell transplantation in primary myelofibrosis: 3 cases report].

Shi H, Liu H, Wei D, Zhu J, Shao S, Jiang Y Zhonghua Xue Ye Xue Za Zhi. 2024; 45(8):785-788.

PMID: 39307728 PMC: 11535553. DOI: 10.3760/cma.j.cn121090-20240117-00029.


A boost for poor graft function.

Mohty M, Malard F Blood Adv. 2024; 8(17):4727-4728.

PMID: 39254966 PMC: 11413695. DOI: 10.1182/bloodadvances.2024013581.


References
1.
Cossio I, Lucas D, Hidalgo A . Neutrophils as regulators of the hematopoietic niche. Blood. 2019; 133(20):2140-2148. PMC: 6524561. DOI: 10.1182/blood-2018-10-844571. View

2.
Song Y, Zhao H, Lyu Z, Cao X, Shi M, Wen Q . Dysfunctional Bone Marrow Mesenchymal Stem Cells in Patients with Poor Graft Function after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant. 2018; 24(10):1981-1989. DOI: 10.1016/j.bbmt.2018.06.021. View

3.
Cuadrado M, Szydlo R, Watts M, Patel N, Renshaw H, Dorman J . Predictors of recovery following allogeneic CD34+-selected cell infusion without conditioning to correct poor graft function. Haematologica. 2020; 105(11):2639-2646. PMC: 7604618. DOI: 10.3324/haematol.2019.226340. View

4.
Alotaibi A, Prem S, Chen S, Lipton J, Kim D, Viswabandya A . Fresh vs. frozen allogeneic peripheral blood stem cell grafts: A successful timely option. Am J Hematol. 2020; 96(2):179-187. DOI: 10.1002/ajh.26033. View

5.
Kao Y, Chen J, Narayanagari S, Todorova T, Aivalioti M, Ferreira M . Thrombopoietin receptor-independent stimulation of hematopoietic stem cells by eltrombopag. Sci Transl Med. 2018; 10(458). PMC: 9899005. DOI: 10.1126/scitranslmed.aas9563. View