» Articles » PMID: 34491202

Activity-dependent Regulation of Mitochondrial Motility in Developing Cortical Dendrites

Overview
Journal Elife
Specialty Biology
Date 2021 Sep 7
PMID 34491202
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Developing neurons form synapses at a high rate. Synaptic transmission is very energy-demanding and likely requires ATP production by mitochondria nearby. Mitochondria might be targeted to active synapses in young dendrites, but whether such motility regulation mechanisms exist is unclear. We investigated the relationship between mitochondrial motility and neuronal activity in the primary visual cortex of young mice in vivo and in slice cultures. During the first 2 postnatal weeks, mitochondrial motility decreases while the frequency of neuronal activity increases. Global calcium transients do not affect mitochondrial motility. However, individual synaptic transmission events precede local mitochondrial arrest. Pharmacological stimulation of synaptic vesicle release, but not focal glutamate application alone, stops mitochondria, suggesting that an unidentified factor co-released with glutamate is required for mitochondrial arrest. A computational model of synaptic transmission-mediated mitochondrial arrest shows that the developmental increase in synapse number and transmission frequency can contribute substantially to the age-dependent decrease of mitochondrial motility.

Citing Articles

Unraveling the Prefrontal Cortex-Basolateral Amygdala Pathway's Role on Schizophrenia's Cognitive Impairments: A Multimodal Study in Patients and Mouse Models.

Liang J, Chen L, Li Y, Chen Y, Yuan L, Qiu Y Schizophr Bull. 2024; 50(4):913-923.

PMID: 38811350 PMC: 11283200. DOI: 10.1093/schbul/sbae063.


Mitochondrial energy state controls AMPK-mediated foraging behavior in .

Vodickova A, Muller-Eigner A, Okoye C, Bischer A, Horn J, Koren S Sci Adv. 2024; 10(16):eadm8815.

PMID: 38630817 PMC: 11023558. DOI: 10.1126/sciadv.adm8815.


Mitochondrial Proteomes in Neural Cells: A Systematic Review.

Nusir A, Sinclair P, Kabbani N Biomolecules. 2023; 13(11).

PMID: 38002320 PMC: 10669788. DOI: 10.3390/biom13111638.


The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS.

Atkinson K, Osunde M, Tiwari-Woodruff S Front Neurosci. 2023; 17:1144896.

PMID: 37559701 PMC: 10409489. DOI: 10.3389/fnins.2023.1144896.


Mitochondria as central hubs in synaptic modulation.

Duarte F, Ciampi D, Duarte C Cell Mol Life Sci. 2023; 80(6):173.

PMID: 37266732 PMC: 10238361. DOI: 10.1007/s00018-023-04814-8.


References
1.
Deheshi S, Pasqualotto B, Rintoul G . Mitochondrial trafficking in neuropsychiatric diseases. Neurobiol Dis. 2012; 51:66-71. DOI: 10.1016/j.nbd.2012.06.015. View

2.
MacAskill A, Rinholm J, Twelvetrees A, Arancibia-Carcamo I, Muir J, Fransson A . Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009; 61(4):541-55. PMC: 2670979. DOI: 10.1016/j.neuron.2009.01.030. View

3.
Leighton A, Lohmann C . The Wiring of Developing Sensory Circuits-From Patterned Spontaneous Activity to Synaptic Plasticity Mechanisms. Front Neural Circuits. 2016; 10:71. PMC: 5011135. DOI: 10.3389/fncir.2016.00071. View

4.
Fukumitsu K, Fujishima K, Yoshimura A, Wu Y, Heuser J, Kengaku M . Synergistic action of dendritic mitochondria and creatine kinase maintains ATP homeostasis and actin dynamics in growing neuronal dendrites. J Neurosci. 2015; 35(14):5707-23. PMC: 6605316. DOI: 10.1523/JNEUROSCI.4115-14.2015. View

5.
Matteoli M, Haimann C, Polak J, Ceccarelli B, De Camilli P . Differential effect of alpha-latrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. Proc Natl Acad Sci U S A. 1988; 85(19):7366-70. PMC: 282187. DOI: 10.1073/pnas.85.19.7366. View