» Articles » PMID: 34453887

Structure of the Ancient TRPY1 Channel from Saccharomyces Cerevisiae Reveals Mechanisms of Modulation by Lipids and Calcium

Overview
Journal Structure
Publisher Cell Press
Date 2021 Aug 28
PMID 34453887
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Transient receptor potential (TRP) channels emerged in fungi as mechanosensitive osmoregulators. The Saccharomyces cerevisiae vacuolar TRP yeast 1 (TRPY1) is the most studied TRP channel from fungi, but the structure and details of channel modulation remain elusive. Here, we describe the full-length cryoelectron microscopy structure of TRPY1 at 3.1 Å resolution in a closed state. The structure, despite containing an evolutionarily conserved and archetypical transmembrane domain, reveals distinctive structural folds for the cytosolic N and C termini, compared with other eukaryotic TRP channels. We identify an inhibitory phosphatidylinositol 3-phosphate (PI(3)P) lipid-binding site, along with two Ca-binding sites: a cytosolic site, implicated in channel activation and a vacuolar lumen site, implicated in inhibition. These findings, together with data from microsecond-long molecular dynamics simulations and a model of a TRPY1 open state, provide insights into the basis of TRPY1 channel modulation by lipids and Ca, and the molecular evolution of TRP channels.

Citing Articles

Artificial intelligence using a latent diffusion model enables the generation of diverse and potent antimicrobial peptides.

Wang Y, Song M, Liu F, Liang Z, Hong R, Dong Y Sci Adv. 2025; 11(6):eadp7171.

PMID: 39908380 PMC: 11797553. DOI: 10.1126/sciadv.adp7171.


Membrane-anchored calpains - hidden regulators of growth and development beyond plants?.

Safranek M, Shumbusho A, Johansen W, Sarkanova J, Vosko S, Bokor B Front Plant Sci. 2024; 14:1289785.

PMID: 38173928 PMC: 10762896. DOI: 10.3389/fpls.2023.1289785.


Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes.

Docampo R Microbiol Mol Biol Rev. 2023; 88(1):e0004223.

PMID: 38099688 PMC: 10966946. DOI: 10.1128/mmbr.00042-23.


The versatility of the putative transient receptor potential ion channels in regulating the calcium signaling in .

Wang H, Gao R, Zhang Y, Lu L mSphere. 2023; 8(6):e0054923.

PMID: 37971274 PMC: 10732042. DOI: 10.1128/msphere.00549-23.


Calcium Ion Channels in .

Dong X J Fungi (Basel). 2023; 9(5).

PMID: 37233235 PMC: 10218840. DOI: 10.3390/jof9050524.


References
1.
Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E . UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13):1605-12. DOI: 10.1002/jcc.20084. View

2.
Moriarty N, Grosse-Kunstleve R, Adams P . electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr. 2009; 65(Pt 10):1074-80. PMC: 2748967. DOI: 10.1107/S0907444909029436. View

3.
Pumroy R, Fluck 3rd E, Ahmed T, Moiseenkova-Bell V . Structural insights into the gating mechanisms of TRPV channels. Cell Calcium. 2020; 87:102168. PMC: 7153993. DOI: 10.1016/j.ceca.2020.102168. View

4.
Paknejad N, Hite R . Structural basis for the regulation of inositol trisphosphate receptors by Ca and IP. Nat Struct Mol Biol. 2018; 25(8):660-668. PMC: 6082148. DOI: 10.1038/s41594-018-0089-6. View

5.
Jensen M, Jogini V, Borhani D, Leffler A, Dror R, Shaw D . Mechanism of voltage gating in potassium channels. Science. 2012; 336(6078):229-33. DOI: 10.1126/science.1216533. View