» Articles » PMID: 34452910

Environmental Vulnerability of the Global Ocean Epipelagic Plankton Community Interactome

Abstract

Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecological drivers underlying planktonic community structure and predicted climate change responses, it is unclear how community-scale species interactions will be affected by climate change. Here, we leveraged Oceans sampling to infer a global ocean cross-domain plankton co-occurrence network-the community interactome-and used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton interactome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected poleward. Integrated niche modeling revealed biome-specific community interactome responses to environmental change and forecasted the most affected lineages for each community. These results provide baseline approaches to assess community structure and organismal interactions under climate scenarios while identifying plausible plankton bioindicators for ocean monitoring of climate change.

Citing Articles

Shotgun metagenomics reveals the flexibility and diversity of Arctic marine microbiomes.

Freyria N, de Oliveira T, Meng A, Pelletier E, Lovejoy C ISME Commun. 2025; 5(1):ycaf007.

PMID: 39995421 PMC: 11847657. DOI: 10.1093/ismeco/ycaf007.


With a little help from my friends: importance of protist-protist interactions in structuring marine protistan communities in the San Pedro Channel.

Gleich S, Mesrop L, Cram J, Weissman J, Hu S, Yeh Y mSystems. 2025; 10(2):e0104524.

PMID: 39878540 PMC: 11834403. DOI: 10.1128/msystems.01045-24.


Unveiling pelagic-benthic coupling associated with the biological carbon pump in the Fram Strait (Arctic Ocean).

Ramondenc S, Eveillard D, Metfies K, Iversen M, Nothig E, Piepenburg D Nat Commun. 2025; 16(1):840.

PMID: 39833152 PMC: 11747630. DOI: 10.1038/s41467-024-55221-x.


Protists and protistology in the Anthropocene: challenges for a climate and ecological crisis.

Perrin A, Dorrell R BMC Biol. 2024; 22(1):279.

PMID: 39617895 PMC: 11610311. DOI: 10.1186/s12915-024-02077-8.


Stress responses in an Arctic microalga (Pelagophyceae) following sudden salinity change revealed by gene expression analysis.

Freyria N, de Oliveira T, Chovatia M, Johnson J, Kuo A, Lipzen A Commun Biol. 2024; 7(1):1084.

PMID: 39232195 PMC: 11375080. DOI: 10.1038/s42003-024-06765-7.


References
1.
Beaugrand G, Kirby R . How Do Marine Pelagic Species Respond to Climate Change? Theories and Observations. Ann Rev Mar Sci. 2018; 10:169-197. DOI: 10.1146/annurev-marine-121916-063304. View

2.
Logares R, Deutschmann I, Junger P, Giner C, Krabberod A, Schmidt T . Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020; 8(1):55. PMC: 7171866. DOI: 10.1186/s40168-020-00827-8. View

3.
Murphy E, Cavanagh R, Drinkwater K, Grant S, Heymans J, Hofmann E . Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proc Biol Sci. 2016; 283(1844). PMC: 5204148. DOI: 10.1098/rspb.2016.1646. View

4.
Zengler K, Hofmockel K, Baliga N, Behie S, Bernstein H, Brown J . EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat Methods. 2019; 16(7):567-571. PMC: 6733021. DOI: 10.1038/s41592-019-0465-0. View

5.
Kurtz Z, Muller C, Miraldi E, Littman D, Blaser M, Bonneau R . Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015; 11(5):e1004226. PMC: 4423992. DOI: 10.1371/journal.pcbi.1004226. View