» Articles » PMID: 34451104

Removal of ECG Artifacts Affects Respiratory Muscle Fatigue Detection-A Simulation Study

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2021 Aug 28
PMID 34451104
Citations 1
Authors
Affiliations
Soon will be listed here.
Abstract

This work investigates elimination methods for cardiogenic artifacts in respiratory surface electromyographic (sEMG) signals and compares their performance with respect to subsequent fatigue detection with different fatigue algorithms. The analysis is based on artificially constructed test signals featuring a clearly defined expected fatigue level. Test signals are additively constructed with different proportions from sEMG and electrocardiographic (ECG) signals. Cardiogenic artifacts are eliminated by high-pass filtering (HP), template subtraction (TS), a newly introduced two-step approach (TSWD) consisting of template subtraction and a wavelet-based damping step and a pure wavelet-based damping (DSO). Each method is additionally combined with the exclusion of QRS segments (gating). Fatigue is subsequently quantified with mean frequency (MNF), spectral moments ratio of order five (SMR5) and fuzzy approximate entropy (fApEn). Different combinations of artifact elimination methods and fatigue detection algorithms are tested with respect to their ability to deliver invariant results despite increasing ECG contamination. Both DSO and TSWD artifact elimination methods displayed promising results regarding the intermediate, "cleaned" EMG signal. However, only the TSWD method enabled superior results in the subsequent fatigue detection across different levels of artifact contamination and evaluation criteria. SMR5 could be determined as the best fatigue detection algorithm. This study proposes a signal processing chain to determine neuromuscular fatigue despite the presence of cardiogenic artifacts. The results furthermore underline the importance of selecting a combination of algorithms that play well together to remove cardiogenic artifacts and to detect fatigue. This investigation provides guidance for clinical studies to select optimal signal processing to detect fatigue from respiratory sEMG signals.

Citing Articles

Analysis and applications of respiratory surface EMG: report of a round table meeting.

Jonkman A, Warnaar R, Baccinelli W, Carbon N, DCruz R, Doorduin J Crit Care. 2024; 28(1):2.

PMID: 38166968 PMC: 10759550. DOI: 10.1186/s13054-023-04779-x.

References
1.
Sieck G, Mazar A, Belman M . Changes in diaphragmatic EMG spectra during hyperpneic loads. Respir Physiol. 1985; 61(2):137-52. DOI: 10.1016/0034-5687(85)90121-5. View

2.
Xie H, Guo J, Zheng Y . Fuzzy approximate entropy analysis of chaotic and natural complex systems: detecting muscle fatigue using electromyography signals. Ann Biomed Eng. 2010; 38(4):1483-96. DOI: 10.1007/s10439-010-9933-5. View

3.
Ortega I, Hernandez Valdivieso A, Lopez J, Villanueva M, Lopez L . Assessment of weaning indexes based on diaphragm activity in mechanically ventilated subjects after cardiovascular surgery. A pilot study. Rev Bras Ter Intensiva. 2017; 29(2):213-221. PMC: 5496756. DOI: 10.5935/0103-507X.20170030. View

4.
Drake J, Callaghan J . Elimination of electrocardiogram contamination from electromyogram signals: An evaluation of currently used removal techniques. J Electromyogr Kinesiol. 2005; 16(2):175-87. DOI: 10.1016/j.jelekin.2005.07.003. View

5.
Stulen F, De Luca C . Muscle fatigue monitor: a noninvasive device for observing localized muscular fatigue. IEEE Trans Biomed Eng. 1982; 29(12):760-8. DOI: 10.1109/TBME.1982.324871. View