» Articles » PMID: 34440818

Building Pluripotency Identity in the Early Embryo and Derived Stem Cells

Overview
Journal Cells
Publisher MDPI
Date 2021 Aug 27
PMID 34440818
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The fusion of two highly differentiated cells, an oocyte with a spermatozoon, gives rise to the zygote, a single totipotent cell, which has the capability to develop into a complete, fully functional organism. Then, as development proceeds, a series of programmed cell divisions occur whereby the arising cells progressively acquire their own cellular and molecular identity, and totipotency narrows until when pluripotency is achieved. The path towards pluripotency involves transcriptome modulation, remodeling of the chromatin epigenetic landscape to which external modulators contribute. Both human and mouse embryos are a source of different types of pluripotent stem cells whose characteristics can be captured and maintained in vitro. The main aim of this review is to address the cellular properties and the molecular signature of the emerging cells during mouse and human early development, highlighting similarities and differences between the two species and between the embryos and their cognate stem cells.

Citing Articles

Interplay of chromatin remodeling BAF complexes in mouse embryonic and epiblast stem cell conversion and maintenance.

Ma Z, Tan S, Lu R, Chen P, Hu Y, Yang T J Biol Chem. 2024; 301(2):108140.

PMID: 39730061 PMC: 11791114. DOI: 10.1016/j.jbc.2024.108140.


Longitudinal profiling of human androgenotes through single-cell analysis unveils paternal gene expression dynamics in early embryo development.

Vendrell X, de Castro P, Escrich L, Grau N, Gonzalez-Martin R, Quinonero A Hum Reprod. 2024; 39(6):1186-1196.

PMID: 38622061 PMC: 11145015. DOI: 10.1093/humrep/deae072.


The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation.

Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman Y, Casado-Hernandez I, Villegas-Valverde C, Bencomo-Hernandez A Int J Mol Sci. 2024; 25(3).

PMID: 38338738 PMC: 10855761. DOI: 10.3390/ijms25031459.


New insights into the epitranscriptomic control of pluripotent stem cell fate.

Che Y, Lee H, Kim Y Exp Mol Med. 2022; 54(10):1643-1651.

PMID: 36266446 PMC: 9636187. DOI: 10.1038/s12276-022-00824-x.


Succinate as a New Actor in Pluripotency and Early Development?.

Detraux D, Renard P Metabolites. 2022; 12(7).

PMID: 35888775 PMC: 9325148. DOI: 10.3390/metabo12070651.


References
1.
Xu R, Li C, Liu X, Gao S . Insights into epigenetic patterns in mammalian early embryos. Protein Cell. 2020; 12(1):7-28. PMC: 7815849. DOI: 10.1007/s13238-020-00757-z. View

2.
Johnson M, McConnell J . Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol. 2004; 15(5):583-97. DOI: 10.1016/j.semcdb.2004.04.002. View

3.
Gafni O, Weinberger L, AlFatah Mansour A, Manor Y, Chomsky E, Ben-Yosef D . Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013; 504(7479):282-6. DOI: 10.1038/nature12745. View

4.
Geng T, Zhang D, Jiang W . Epigenetic Regulation of Transition Among Different Pluripotent States: Concise Review. Stem Cells. 2019; 37(11):1372-1380. DOI: 10.1002/stem.3064. View

5.
Yan L, Yang M, Guo H, Yang L, Wu J, Li R . Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013; 20(9):1131-9. DOI: 10.1038/nsmb.2660. View