A Pipeline for Predicting the Treatment Response of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer Using Single MRI Modality: Combining Deep Segmentation Network and Radiomics Analysis Based on "Suspicious Region"
Overview
Affiliations
Patients with locally advanced rectal cancer (LARC) who achieve a pathologic complete response (pCR) after neoadjuvant chemoradiotherapy (nCRT) typically have a good prognosis. An early and accurate prediction of the treatment response, i.e., whether a patient achieves pCR, could significantly help doctors make tailored plans for LARC patients. This study proposes a pipeline of pCR prediction using a combination of deep learning and radiomics analysis. Taking into consideration missing pre-nCRT magnetic resonance imaging (MRI), as well as aiming to improve the efficiency for clinical application, the pipeline only included a post-nCRT T2-weighted (T2-w) MRI. Unlike other studies that attempted to carefully find the region of interest (ROI) using a pre-nCRT MRI as a reference, we placed the ROI on a "suspicious region", which is a continuous area that has a high possibility to contain a tumor or fibrosis as assessed by radiologists. A deep segmentation network, termed the two-stage rectum-aware U-Net (tsraU-Net), is designed to segment the ROI to substitute for a time-consuming manual delineation. This is followed by a radiomics analysis model based on the ROI to extract the hidden information and predict the pCR status. The data from a total of 275 patients were collected from two hospitals and partitioned into four datasets: Seg-T (N = 88) for training the tsraUNet, Rad-T (N = 107) for building the radiomics model, In-V (N = 46) for internal validation, and Ex-V (N = 34) for external validation. The proposed method achieved an area under the curve (AUC) of 0.829 (95% confidence interval [CI]: 0.821, 0.837) on In-V and 0.815 (95% CI, 0.801, 0.830) on Ex-V. The performance of the method was considerable and stable in two validation sets, indicating that the well-designed pipeline has the potential to be used in real clinical procedures.
Jong B, Yu Z, Hsu Y, Chiang S, You J, Chern Y Int J Colorectal Dis. 2025; 40(1):19.
PMID: 39833443 PMC: 11753312. DOI: 10.1007/s00384-025-04809-w.
Curcean S, Curcean A, Martin D, Fekete Z, Irimie A, Muntean A Cancers (Basel). 2024; 16(17).
PMID: 39272969 PMC: 11394290. DOI: 10.3390/cancers16173111.
Recent trends in AI applications for pelvic MRI: a comprehensive review.
Tsuboyama T, Yanagawa M, Fujioka T, Fujita S, Ueda D, Ito R Radiol Med. 2024; 129(9):1275-1287.
PMID: 39096356 DOI: 10.1007/s11547-024-01861-4.
Shen H, Jin Z, Chen Q, Zhang L, You J, Zhang S Radiol Med. 2024; 129(4):598-614.
PMID: 38512622 DOI: 10.1007/s11547-024-01796-w.
Xia S, Li Q, Zhu H, Zhang X, Shi Y, Yang D BMC Cancer. 2024; 24(1):315.
PMID: 38454349 PMC: 10919051. DOI: 10.1186/s12885-024-11997-1.