Boundary Loss for Highly Unbalanced Segmentation
Overview
Affiliations
Widely used loss functions for CNN segmentation, e.g., Dice or cross-entropy, are based on integrals over the segmentation regions. Unfortunately, for highly unbalanced segmentations, such regional summations have values that differ by several orders of magnitude across classes, which affects training performance and stability. We propose a boundary loss, which takes the form of a distance metric on the space of contours, not regions. This can mitigate the difficulties of highly unbalanced problems because it uses integrals over the interface between regions instead of unbalanced integrals over the regions. Furthermore, a boundary loss complements regional information. Inspired by graph-based optimization techniques for computing active-contour flows, we express a non-symmetric L distance on the space of contours as a regional integral, which avoids completely local differential computations involving contour points. This yields a boundary loss expressed with the regional softmax probability outputs of the network, which can be easily combined with standard regional losses and implemented with any existing deep network architecture for N-D segmentation. We report comprehensive evaluations and comparisons on different unbalanced problems, showing that our boundary loss can yield significant increases in performances while improving training stability. Our code is publicly available.
SAM-MedUS: a foundational model for universal ultrasound image segmentation.
Tian F, Zhai J, Gong J, Lei W, Chang S, Ju F J Med Imaging (Bellingham). 2025; 12(2):027001.
PMID: 40028655 PMC: 11865838. DOI: 10.1117/1.JMI.12.2.027001.
Bai Y, Zhou H, Zhu H, Wen S, Hu B, Li H Sci Rep. 2025; 15(1):4835.
PMID: 39924544 PMC: 11808054. DOI: 10.1038/s41598-025-85301-x.
Ryu S, Shin K, Shin S, Lee S, Seo S, Koh S Biomed Eng Lett. 2025; 15(1):203-215.
PMID: 39781051 PMC: 11704119. DOI: 10.1007/s13534-024-00439-3.
Shape-aware Segmentation of the Placenta in BOLD Fetal MRI Time Series.
Abulnaga S, Dey N, Young S, Pan E, Hobgood K, Wang C J Mach Learn Biomed Imaging. 2024; 2(PIPPI 2022):527-546.
PMID: 39469044 PMC: 11514310. DOI: 10.59275/j.melba.2023-g3f8.
Reasoning cartographic knowledge in deep learning-based map generalization with explainable AI.
Fu C, Zhou Z, Xin Y, Weibel R Int J Geogr Inf Sci. 2024; 38(10):2061-2082.
PMID: 39318700 PMC: 11418907. DOI: 10.1080/13658816.2024.2369535.