» Articles » PMID: 34415659

A Nonheme Mononuclear {FeNO} Complex That Produces N O in the Absence of an Exogenous Reductant

Overview
Specialty Chemistry
Date 2021 Aug 20
PMID 34415659
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

A new nonheme iron(II) complex, Fe (Me TACN)((OSi ) O) (1), is reported. Reaction of 1 with NO gives a stable mononitrosyl complex Fe(NO)(Me TACN)((OSi ) O) (2), which was characterized by Mössbauer (δ=0.52 mm s , |ΔE |=0.80 mm s ), EPR (S=3/2), resonance Raman (RR) and Fe K-edge X-ray absorption spectroscopies. The data show that 2 is an {FeNO} complex with an S=3/2 spin ground state. The RR spectrum (λ =458 nm) of 2 combined with isotopic labeling ( N, O) reveals ν(N-O)=1680 cm , which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm ). Complex 2 reacts rapidly with H O in THF to produce the N-N coupled product N O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N O in the absence of an exogenous reductant.

Citing Articles

Intermolecular N-N Coupling of a Dinitrosyl Iron Complex Induced by Hydrogen Bond Donors in the Secondary Coordination Sphere.

Fugami K, Black G, Kowalczyk T, Seda T, Gilbertson J J Am Chem Soc. 2025; 147(9):7274-7281.

PMID: 39969499 PMC: 11887047. DOI: 10.1021/jacs.4c12787.


A single outer-sphere amino-acid substitution turns on the NO reactivity of a hemerythrin-like protein.

Albert T, Pence N, Zhong F, Pletneva E, Moenne-Loccoz P Chem Sci. 2025; 16(7):3238-3245.

PMID: 39840292 PMC: 11744678. DOI: 10.1039/d4sc07529c.


Oxygen versus Sulfur Coordination in Cobalt Superoxo Complexes: Spectroscopic Properties, O Binding, and H-Atom Abstraction Reactivity.

Gordon J, Albert T, Yadav S, Thomas J, Siegler M, Moenne-Loccoz P Inorg Chem. 2022; 62(1):392-400.

PMID: 36538786 PMC: 10194424. DOI: 10.1021/acs.inorgchem.2c03484.


Direct Reduction of NO to NO by a Mononuclear Nonheme Thiolate Ligated Iron(II) Complex via Formation of a Metastable {FeNO} Complex.

Dey A, Albert T, Kong R, MacMillan S, Moenne-Loccoz P, Lancaster K Inorg Chem. 2022; 61(38):14909-14917.

PMID: 36107151 PMC: 9555345. DOI: 10.1021/acs.inorgchem.2c02383.


What Is the Right Level of Activation of a High-Spin {FeNO} Complex to Enable Direct N-N Coupling? Mechanistic Insight into Flavodiiron NO Reductases.

Dong H, Camarena S, Sil D, Lengel M, Zhao J, Hu M J Am Chem Soc. 2022; 144(36):16395-16409.

PMID: 36040133 PMC: 10279474. DOI: 10.1021/jacs.2c04292.


References
1.
Jana M, White C, Pal N, Demeshko S, Cordes Nee Kupper C, Meyer F . Functional Models for the Mono- and Dinitrosyl Intermediates of FNORs: Semireduction versus Superreduction of NO. J Am Chem Soc. 2020; 142(14):6600-6616. DOI: 10.1021/jacs.9b13795. View

2.
McQuilken A, Matsumura H, Durr M, Confer A, Sheckelton J, Siegler M . Photoinitiated Reactivity of a Thiolate-Ligated, Spin-Crossover Nonheme {FeNO}(7) Complex with Dioxygen. J Am Chem Soc. 2016; 138(9):3107-17. PMC: 5502531. DOI: 10.1021/jacs.5b12741. View

3.
Zheng S, Berto T, Dahl E, Hoffman M, Speelman A, Lehnert N . The functional model complex [Fe2(BPMP)(OPr)(NO)2](BPh4)2 provides insight into the mechanism of flavodiiron NO reductases. J Am Chem Soc. 2013; 135(13):4902-5. DOI: 10.1021/ja309782m. View

4.
Weigend F, Ahlrichs R . Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys Chem Chem Phys. 2005; 7(18):3297-305. DOI: 10.1039/b508541a. View

5.
Wasser I, de Vries S, Moenne-Loccoz P, Schroder I, Karlin K . Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NO(x) redox chemistry. Chem Rev. 2002; 102(4):1201-34. DOI: 10.1021/cr0006627. View