» Articles » PMID: 34404800

The Potential of Chemical Bonding to Design Crystallization and Vitrification Kinetics

Overview
Journal Nat Commun
Specialty Biology
Date 2021 Aug 18
PMID 34404800
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Controlling a state of material between its crystalline and glassy phase has fostered many real-world applications. Nevertheless, design rules for crystallization and vitrification kinetics still lack predictive power. Here, we identify stoichiometry trends for these processes in phase change materials, i.e. along the GeTe-GeSe, GeTe-SnTe, and GeTe-SbTe pseudo-binary lines employing a pump-probe laser setup and calorimetry. We discover a clear stoichiometry dependence of crystallization speed along a line connecting regions characterized by two fundamental bonding types, metallic and covalent bonding. Increasing covalency slows down crystallization by six orders of magnitude and promotes vitrification. The stoichiometry dependence is correlated with material properties, such as the optical properties of the crystalline phase and a bond indicator, the number of electrons shared between adjacent atoms. A quantum-chemical map explains these trends and provides a blueprint to design crystallization kinetics.

Citing Articles

Atom Probe Tomography: a Local Probe for Chemical Bonds in Solids.

Cojocaru-Miredin O, Yu Y, Kottgen J, Ghosh T, Schon C, Han S Adv Mater. 2024; 36(50):e2403046.

PMID: 39520347 PMC: 11636162. DOI: 10.1002/adma.202403046.


Soret-Effect Induced Phase-Change in a Chromium Nitride Semiconductor Film.

Shuang Y, Mori S, Yamamoto T, Hatayama S, Saito Y, Fons P ACS Nano. 2024; 18(32):21135-21143.

PMID: 39088786 PMC: 11328172. DOI: 10.1021/acsnano.4c03574.


Versatile spaceborne photonics with chalcogenide phase-change materials.

Kim H, Julian M, Williams C, Bombara D, Hu J, Gu T NPJ Microgravity. 2024; 10(1):20.

PMID: 38378811 PMC: 10879159. DOI: 10.1038/s41526-024-00358-8.


Tailoring chemical bonds to design unconventional glasses.

Raty J, Bichara C, Schon C, Gatti C, Wuttig M Proc Natl Acad Sci U S A. 2024; 121(2):e2316498121.

PMID: 38170754 PMC: 10786265. DOI: 10.1073/pnas.2316498121.


Phase-Change Memory from Molecular Tellurides.

Schenk F, Zellweger T, Kumaar D, Boskovic D, Wintersteller S, Solokha P ACS Nano. 2023; 18(1):1063-1072.

PMID: 38117038 PMC: 10786157. DOI: 10.1021/acsnano.3c10312.


References
1.
Orava J, Greer A . Fast and slow crystal growth kinetics in glass-forming melts. J Chem Phys. 2014; 140(21):214504. DOI: 10.1063/1.4880959. View

2.
Wuttig M, Deringer V, Gonze X, Bichara C, Raty J . Incipient Metals: Functional Materials with a Unique Bonding Mechanism. Adv Mater. 2018; 30(51):e1803777. DOI: 10.1002/adma.201803777. View

3.
Raty J, Zhang W, Luckas J, Chen C, Mazzarello R, Bichara C . Aging mechanisms in amorphous phase-change materials. Nat Commun. 2015; 6:7467. DOI: 10.1038/ncomms8467. View

4.
Kolobov A, Fons P, Frenkel A, Ankudinov A, Tominaga J, Uruga T . Understanding the phase-change mechanism of rewritable optical media. Nat Mater. 2004; 3(10):703-8. DOI: 10.1038/nmat1215. View

5.
Angell C . Formation of glasses from liquids and biopolymers. Science. 1995; 267(5206):1924-35. DOI: 10.1126/science.267.5206.1924. View