» Articles » PMID: 34396153

Effect of Crista Morphology on Mitochondrial ATP Output: A Computational Study

Overview
Date 2021 Aug 16
PMID 34396153
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Folding of the mitochondrial inner membrane (IM) into cristae greatly increases the ATP-generating surface area, , per unit volume but also creates diffusional bottlenecks that could limit reaction rates inside mitochondria. This study explores possible effects of inner membrane folding on mitochondrial ATP output, using a mathematical model for energy metabolism developed by the Jafri group and two- and three-dimensional spatial models for mitochondria, implemented on the Virtual Cell platform. Simulations demonstrate that cristae are micro-compartments functionally distinct from the cytosol. At physiological steady states, standing gradients of ADP form inside cristae that depend on the size and shape of the compartments, and reduce local flux (rate per unit area) of the adenine nucleotide translocase. This causes matrix ADP levels to drop, which in turn reduces the flux of ATP synthase. The adverse effects of membrane folding on reaction fluxes increase with crista length and are greater for lamellar than tubular crista. However, total ATP output per mitochondrion is the product of flux of ATP synthase and which can be two-fold greater for mitochondria with lamellar than tubular cristae, resulting in greater ATP output for the former. The simulations also demonstrate the crucial role played by intracristal kinases (adenylate kinase, creatine kinase) in maintaining the energy advantage of IM folding.

Citing Articles

How the Topology of the Mitochondrial Inner Membrane Modulates ATP Production.

Adams R, Afzal N, Jafri M, Mannella C Cells. 2025; 14(4).

PMID: 39996730 PMC: 11853683. DOI: 10.3390/cells14040257.


Calorie restriction increases insulin sensitivity to promote beta cell homeostasis and longevity in mice.

Dos Santos C, Cambraia A, Shrestha S, Cutler M, Cottam M, Perkins G Nat Commun. 2024; 15(1):9063.

PMID: 39433757 PMC: 11493975. DOI: 10.1038/s41467-024-53127-2.


Mitochondrial dynamics regulate cell morphology in the developing cochlea.

OSullivan J, Terry S, Scott C, Bullen A, Jagger D, Mann Z Development. 2024; 151(15).

PMID: 39120083 PMC: 11809207. DOI: 10.1242/dev.202845.


Beyond fission and fusion-Diving into the mysteries of mitochondrial shape.

Preminger N, Schuldiner M PLoS Biol. 2024; 22(7):e3002671.

PMID: 38949997 PMC: 11216622. DOI: 10.1371/journal.pbio.3002671.


Chloroplast ATP synthase: From structure to engineering.

Ruhle T, Leister D, Pasch V Plant Cell. 2024; 36(10):3974-3996.

PMID: 38484126 PMC: 11449085. DOI: 10.1093/plcell/koae081.


References
1.
Laguens R . Morphometric study of myocardial mitochondria in the rat. J Cell Biol. 1971; 48(3):673-6. PMC: 2108102. DOI: 10.1083/jcb.48.3.673. View

2.
Toth A, Meyrat A, Stoldt S, Santiago R, Wenzel D, Jakobs S . Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proc Natl Acad Sci U S A. 2020; 117(5):2412-2421. PMC: 7007565. DOI: 10.1073/pnas.1917968117. View

3.
Mannella C . Structural diversity of mitochondria: functional implications. Ann N Y Acad Sci. 2008; 1147:171-9. PMC: 2605638. DOI: 10.1196/annals.1427.020. View

4.
Song D, Park J, Maurer L, Lu W, Philbert M, Sastry A . Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria. Phys Rev E Stat Nonlin Soft Matter Phys. 2014; 88(6):062723. PMC: 4315510. DOI: 10.1103/PhysRevE.88.062723. View

5.
Lu Y, Acoba M, Selvaraju K, Huang T, Nirujogi R, Sathe G . Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell. 2017; 28(11):1489-1506. PMC: 5449148. DOI: 10.1091/mbc.E17-03-0195. View