» Articles » PMID: 34388852

A Systems-level Analysis Highlights Microglial Activation As a Modifying Factor in Common Epilepsies

Overview
Specialty Neurology
Date 2021 Aug 13
PMID 34388852
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Aims: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis.

Methods: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy.

Results: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia.

Conclusions: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.

Citing Articles

Big data research is everyone's research-Making epilepsy data science accessible to the global community: Report of the ILAE big data commission.

Josephson C, Aronica E, Beniczky S, Boyce D, Cavalleri G, Denaxas S Epileptic Disord. 2024; 26(6):733-752.

PMID: 39446076 PMC: 11651381. DOI: 10.1002/epd2.20288.


Ulinastatin modulates NLRP3 inflammasome pathway in PTZ-induced epileptic mice: A potential mechanistic insight.

Wang H, Ma Y, Jin D, Yang X, Xu X Heliyon. 2024; 10(19):e38050.

PMID: 39386862 PMC: 11462202. DOI: 10.1016/j.heliyon.2024.e38050.


Microglia and infiltrating macrophages in ictogenesis and epileptogenesis.

Broer S, Pauletti A Front Mol Neurosci. 2024; 17:1404022.

PMID: 38873242 PMC: 11171130. DOI: 10.3389/fnmol.2024.1404022.


Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome.

Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C Cells. 2024; 13(8.

PMID: 38667299 PMC: 11049242. DOI: 10.3390/cells13080684.


mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment.

Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E, Vezzani A Nat Rev Neurosci. 2024; 25(5):334-350.

PMID: 38531962 DOI: 10.1038/s41583-024-00805-1.


References
1.
Gu B, Huang Y, He X, Joshi R, Jang W, McNamara J . A Peptide Uncoupling BDNF Receptor TrkB from Phospholipase Cγ1 Prevents Epilepsy Induced by Status Epilepticus. Neuron. 2015; 88(3):484-91. PMC: 4636438. DOI: 10.1016/j.neuron.2015.09.032. View

2.
Devinsky O, Vezzani A, Najjar S, de Lanerolle N, Rogawski M . Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013; 36(3):174-84. DOI: 10.1016/j.tins.2012.11.008. View

3.
Bell G, Neligan A, Giavasi C, Keezer M, Novy J, Peacock J . Outcome of seizures in the general population after 25 years: a prospective follow-up, observational cohort study. J Neurol Neurosurg Psychiatry. 2016; 87(8):843-50. DOI: 10.1136/jnnp-2015-312314. View

4.
Srivastava P, van Eyll J, Godard P, Mazzuferi M, Delahaye-Duriez A, Steenwinckel J . A systems-level framework for drug discovery identifies Csf1R as an anti-epileptic drug target. Nat Commun. 2018; 9(1):3561. PMC: 6120885. DOI: 10.1038/s41467-018-06008-4. View

5.
Elmore M, Najafi A, Koike M, Dagher N, Spangenberg E, Rice R . Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014; 82(2):380-97. PMC: 4161285. DOI: 10.1016/j.neuron.2014.02.040. View