6.
Das R, Kazy S
. Microbial diversity, community composition and metabolic potential in hydrocarbon contaminated oily sludge: prospects for in situ bioremediation. Environ Sci Pollut Res Int. 2014; 21(12):7369-89.
DOI: 10.1007/s11356-014-2640-2.
View
7.
Piazza A, Ciancio Casalini L, Pacini V, Sanguinetti G, Ottado J, Gottig N
. Environmental Bacteria Involved in Manganese(II) Oxidation and Removal From Groundwater. Front Microbiol. 2019; 10:119.
PMC: 6396730.
DOI: 10.3389/fmicb.2019.00119.
View
8.
McMahon P, Chapelle F
. Redox processes and water quality of selected principal aquifer systems. Ground Water. 2008; 46(2):259-71.
DOI: 10.1111/j.1745-6584.2007.00385.x.
View
9.
Fennell D, Carroll A, Gossett J, Zinder S
. Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data. Environ Sci Technol. 2001; 35(9):1830-9.
DOI: 10.1021/es0016203.
View
10.
Smidt H, de Vos W
. Anaerobic microbial dehalogenation. Annu Rev Microbiol. 2004; 58:43-73.
DOI: 10.1146/annurev.micro.58.030603.123600.
View
11.
Guo L, Wang G, Sheng Y, Shi Z, Sun X
. Groundwater microbial communities and their connection to hydrochemical environment in Golmud, Northwest China. Sci Total Environ. 2019; 695:133848.
DOI: 10.1016/j.scitotenv.2019.133848.
View
12.
Guilbeault M, Parker B, Cherry J
. Mass and flux distributions from DNAPL zones in sandy aquifers. Ground Water. 2005; 43(1):70-86.
DOI: 10.1111/j.1745-6584.2005.tb02287.x.
View
13.
Rossi P, Gillet F, Rohrbach E, Diaby N, Holliger C
. Statistical assessment of variability of terminal restriction fragment length polymorphism analysis applied to complex microbial communities. Appl Environ Microbiol. 2009; 75(22):7268-70.
PMC: 2786532.
DOI: 10.1128/AEM.00135-09.
View
14.
Hartog N, Cho J, Parker B, Annable M
. Characterization of a heterogeneous DNAPL source zone in the Borden aquifer using partitioning and interfacial tracers: residual morphologies and background sorption. J Contam Hydrol. 2010; 115(1-4):79-89.
DOI: 10.1016/j.jconhyd.2010.04.004.
View
15.
Sung Y, Ritalahti K, Sanford R, Urbance J, Flynn S, Tiedje J
. Characterization of two tetrachloroethene-reducing, acetate-oxidizing anaerobic bacteria and their description as Desulfuromonas michiganensis sp. nov. Appl Environ Microbiol. 2003; 69(5):2964-74.
PMC: 154526.
DOI: 10.1128/AEM.69.5.2964-2974.2003.
View
16.
Kent A, Smith D, Benson B, Triplett E
. Web-based phylogenetic assignment tool for analysis of terminal restriction fragment length polymorphism profiles of microbial communities. Appl Environ Microbiol. 2003; 69(11):6768-76.
PMC: 262325.
DOI: 10.1128/AEM.69.11.6768-6776.2003.
View
17.
Eschbach M, Mobitz H, Rompf A, Jahn D
. Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett. 2003; 223(2):227-30.
DOI: 10.1016/S0378-1097(03)00383-5.
View
18.
Vela A, Garcia N, Latre M, Casamayor A, Sanchez-Porro C, Briones V
. Aerococcus suis sp. nov., isolated from clinical specimens from swine. Int J Syst Evol Microbiol. 2007; 57(Pt 6):1291-1294.
DOI: 10.1099/ijs.0.64537-0.
View
19.
Schmidt S, Cuthbert M, Schwientek M
. Towards an integrated understanding of how micro scale processes shape groundwater ecosystem functions. Sci Total Environ. 2017; 592:215-227.
DOI: 10.1016/j.scitotenv.2017.03.047.
View
20.
Chang Y, Ikeutsu K, Toyama T, Choi D, Kikuchi S
. Isolation and characterization of tetrachloroethylene- and cis-1,2-dichloroethylene-dechlorinating propionibacteria. J Ind Microbiol Biotechnol. 2011; 38(10):1667-77.
DOI: 10.1007/s10295-011-0956-1.
View