» Articles » PMID: 34331987

Fibrosis of the Diabetic Heart: Clinical Significance, Molecular Mechanisms, and Therapeutic Opportunities

Overview
Specialty Pharmacology
Date 2021 Jul 31
PMID 34331987
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

In patients with diabetes, myocardial fibrosis may contribute to the pathogenesis of heart failure and arrhythmogenesis, increasing ventricular stiffness and delaying conduction. Diabetic myocardial fibrosis involves effects of hyperglycemia, lipotoxicity and insulin resistance on cardiac fibroblasts, directly resulting in increased matrix secretion, and activation of paracrine signaling in cardiomyocytes, immune and vascular cells, that release fibroblast-activating mediators. Neurohumoral pathways, cytokines, growth factors, oxidative stress, advanced glycation end-products (AGEs), and matricellular proteins have been implicated in diabetic fibrosis; however, the molecular links between the metabolic perturbations and activation of a fibrogenic program remain poorly understood. Although existing therapies using glucose- and lipid-lowering agents and neurohumoral inhibition may act in part by attenuating myocardial collagen deposition, specific therapies targeting the fibrotic response are lacking. This review manuscript discusses the clinical significance, molecular mechanisms and cell biology of diabetic cardiac fibrosis and proposes therapeutic targets that may attenuate the fibrotic response, preventing heart failure progression.

Citing Articles

Cellular crosstalk in organotypic vasculature: mechanisms of diabetic cardiorenal complications and SGLT2i responses.

Wang W, Liu Y, Xu Q, Liu L, Zhu M, Li Y Cardiovasc Diabetol. 2025; 24(1):90.

PMID: 40012066 PMC: 11866599. DOI: 10.1186/s12933-025-02655-2.


Inhibition of high glucose-induced cardiac fibroblast activation: an effective treatment for diabetic cardiomyopathy using Chinese herbal medicine.

Wan B, Hu J, Luo Y, Han Y, Zhang Y, Huang Q Front Pharmacol. 2025; 16:1523014.

PMID: 39931690 PMC: 11808154. DOI: 10.3389/fphar.2025.1523014.


Lipoxin A improves cardiac remodeling and function in diabetes-associated cardiac dysfunction.

Fu T, Mohan M, Bose M, Brennan E, Kiriazis H, Deo M Cardiovasc Diabetol. 2024; 23(1):413.

PMID: 39563316 PMC: 11577589. DOI: 10.1186/s12933-024-02501-x.


Identification of immune feature genes and intercellular profiles in diabetic cardiomyopathy.

Zheng Z, Cai D, Song Y World J Diabetes. 2024; 15(10):2093-2110.

PMID: 39493556 PMC: 11525719. DOI: 10.4239/wjd.v15.i10.2093.


Mini Review: the non-neuronal cardiac cholinergic system in type-2 diabetes mellitus.

Saw E, Fronius M, Katare R, Kakinuma Y Front Cardiovasc Med. 2024; 11:1425534.

PMID: 39314774 PMC: 11417620. DOI: 10.3389/fcvm.2024.1425534.


References
1.
Lindman B, Davila-Roman V, Mann D, McNulty S, Semigran M, Lewis G . Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014; 64(6):541-9. PMC: 4133145. DOI: 10.1016/j.jacc.2014.05.030. View

2.
Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, Mysiak A, OMoore-Sullivan T, Marwick T . A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc Imaging. 2011; 4(12):1239-49. DOI: 10.1016/j.jcmg.2011.08.014. View

3.
Watanabe M, Yokoshiki H, Mitsuyama H, Mizukami K, Ono T, Tsutsui H . Conduction and refractory disorders in the diabetic atrium. Am J Physiol Heart Circ Physiol. 2012; 303(1):H86-95. DOI: 10.1152/ajpheart.00010.2012. View

4.
Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F . Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids. 2002; 36 Suppl:S53-63. DOI: 10.1007/s11745-001-0683-y. View

5.
Tate M, Prakoso D, Willis A, Peng C, Deo M, Qin C . Characterising an Alternative Murine Model of Diabetic Cardiomyopathy. Front Physiol. 2019; 10:1395. PMC: 6868003. DOI: 10.3389/fphys.2019.01395. View