» Articles » PMID: 34322585

Engineered RNA Nanodesigns for Applications in RNA Nanotechnology

Overview
Date 2021 Jul 29
PMID 34322585
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Nucleic acids have emerged as an extremely promising platform for nanotechnological applications because of their unique biochemical properties and functions. RNA, in particular, is characterized by relatively high thermal stability, diverse structural flexibility, and its capacity to perform a variety of functions in nature. These properties make RNA a valuable platform for bio-nanotechnology, specifically RNA Nanotechnology, that can create nanostructures with unique functionalities through the design, integration, and re-engineering of powerful mechanisms based on a variety of existing RNA structures and their fundamental biochemical properties. This review highlights the principles that underlie the rational design of RNA nanostructures, describes the main strategies used to construct self-assembling nanoparticles, and discusses the challenges and possibilities facing the application of RNA Nanotechnology in the future.

Citing Articles

RNA four-way junction (4WJ) for spontaneous cancer-targeting, effective tumor-regression, metastasis suppression, fast renal excretion and undetectable toxicity.

Li X, Jin K, Cheng T, Liao Y, Lee W, Bhullar A Biomaterials. 2024; 305:122432.

PMID: 38176263 PMC: 10994150. DOI: 10.1016/j.biomaterials.2023.122432.


Light-Assisted Drying for the Thermal Stabilization of Nucleic Acid Nanoparticles and Other Biologics.

Trammell S Methods Mol Biol. 2023; 2709:117-130.

PMID: 37572276 DOI: 10.1007/978-1-0716-3417-2_7.


Toehold-Mediated Shape Transition of Nucleic Acid Nanoparticles.

Hartung J, McCann N, Doe E, Hayth H, Benkato K, Johnson M ACS Appl Mater Interfaces. 2023; 15(21):25300-25312.

PMID: 37204867 PMC: 10331730. DOI: 10.1021/acsami.3c01604.


Computational design and experimental verification of pseudoknotted ribozymes.

Najeh S, Zandi K, Kharma N, Perreault J RNA. 2023; 29(6):764-776.

PMID: 36868786 PMC: 10187678. DOI: 10.1261/rna.079148.122.


The Application of Light-Assisted Drying to the Thermal Stabilization of Nucleic Acid Nanoparticles.

Anh Lam P, Furr D, Tran A, McKeough R, Beasock D, Chandler M Biopreserv Biobank. 2022; 20(5):451-460.

PMID: 36067075 PMC: 9603253. DOI: 10.1089/bio.2022.0035.


References
1.
Delebecque C, Lindner A, Silver P, Aldaye F . Organization of intracellular reactions with rationally designed RNA assemblies. Science. 2011; 333(6041):470-4. DOI: 10.1126/science.1206938. View

2.
Afonin K, Lin Y, Calkins E, Jaeger L . Attenuation of loop-receptor interactions with pseudoknot formation. Nucleic Acids Res. 2011; 40(5):2168-80. PMC: 3300017. DOI: 10.1093/nar/gkr926. View

3.
Kruger K, Grabowski P, Zaug A, Sands J, Gottschling D, Cech T . Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982; 31(1):147-57. DOI: 10.1016/0092-8674(82)90414-7. View

4.
Purnick P, Weiss R . The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol. 2009; 10(6):410-22. DOI: 10.1038/nrm2698. View

5.
Tamura M, Hendrix D, Klosterman P, Schimmelman N, Brenner S, Holbrook S . SCOR: Structural Classification of RNA, version 2.0. Nucleic Acids Res. 2003; 32(Database issue):D182-4. PMC: 308814. DOI: 10.1093/nar/gkh080. View