» Articles » PMID: 34321208

Biomaterials with Structural Hierarchy and Controlled 3D Nanotopography Guide Endogenous Bone Regeneration

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2021 Jul 29
PMID 34321208
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

Biomaterials without exogenous cells or therapeutic agents often fail to achieve rapid endogenous bone regeneration with high quality. Here, we reported a class of three-dimensional (3D) nanofiber scaffolds with hierarchical structure and controlled alignment for effective endogenous cranial bone regeneration. 3D scaffolds consisting of radially aligned nanofibers guided and promoted the migration of bone marrow stem cells from the surrounding region to the center in vitro. These scaffolds showed the highest new bone volume, surface coverage, and mineral density among the tested groups in vivo. The regenerated bone exhibited a radially aligned fashion, closely recapitulating the scaffold's architecture. The organic phase in regenerated bone showed an aligned, layered, and densely packed structure, while the inorganic mineral phase showed a uniform distribution with smaller pore size and an even distribution of stress upon the simulated compression. We expect that this study will inspire the design of next-generation biomaterials for effective endogenous bone regeneration with desired quality.

Citing Articles

Engineering multifunctional surface topography to regulate multiple biological responses.

Asadi Tokmedash M, Kim C, Chavda A, Li A, Robins J, Min J Biomaterials. 2025; 319:123136.

PMID: 39978049 PMC: 11893264. DOI: 10.1016/j.biomaterials.2025.123136.


Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Wu Y, Yue X, Zhang Y, Yu N, Ge C, Liu R Mater Today Bio. 2025; 30:101436.

PMID: 39866796 PMC: 11762576. DOI: 10.1016/j.mtbio.2024.101436.


Advances in the Development of Gradient Scaffolds Made of Nano-Micromaterials for Musculoskeletal Tissue Regeneration.

Fang L, Lin X, Xu R, Liu L, Zhang Y, Tian F Nanomicro Lett. 2024; 17(1):75.

PMID: 39601962 PMC: 11602939. DOI: 10.1007/s40820-024-01581-4.


Mineralized collagen plywood contributes to bone autograft performance.

Robin M, Mouloungui E, Castillo Dali G, Wang Y, Saffar J, Pavon-Djavid G Nature. 2024; 636(8041):100-107.

PMID: 39567697 PMC: 11618095. DOI: 10.1038/s41586-024-08208-z.


A 3D radially aligned nanofiber scaffold co-loaded with LL37 mimetic peptide and PDGF-BB for the management of infected chronic wounds.

Li F, Zhang C, Zhong X, Li B, Zhang M, Li W Mater Today Bio. 2024; 28:101237.

PMID: 39315393 PMC: 11419797. DOI: 10.1016/j.mtbio.2024.101237.


References
1.
Huang Y, Jakus A, Jordan S, Dumanian Z, Parker K, Zhao L . Three-Dimensionally Printed Hyperelastic Bone Scaffolds Accelerate Bone Regeneration in Critical-Size Calvarial Bone Defects. Plast Reconstr Surg. 2019; 143(5):1397-1407. DOI: 10.1097/PRS.0000000000005530. View

2.
Petersen A, Princ A, Korus G, Ellinghaus A, Leemhuis H, Herrera A . A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat Commun. 2018; 9(1):4430. PMC: 6202397. DOI: 10.1038/s41467-018-06504-7. View

3.
Duval K, Grover H, Han L, Mou Y, Pegoraro A, Fredberg J . Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda). 2017; 32(4):266-277. PMC: 5545611. DOI: 10.1152/physiol.00036.2016. View

4.
James A, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X . A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Eng Part B Rev. 2016; 22(4):284-97. PMC: 4964756. DOI: 10.1089/ten.TEB.2015.0357. View

5.
Jain A, Betancur M, Patel G, Valmikinathan C, Mukhatyar V, Vakharia A . Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres. Nat Mater. 2014; 13(3):308-16. DOI: 10.1038/nmat3878. View