» Articles » PMID: 34307130

Biochanin A Inhibits Glioblastoma Growth Restricting Glycolysis and Mitochondrial Oxidative Phosphorylation

Overview
Journal Front Oncol
Specialty Oncology
Date 2021 Jul 26
PMID 34307130
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Abnormal metabolism serves a critical role in glioblastoma (GBM). Biochanin A (BCA), a flavonoid phenolic compound found in edible and herbal plants, has antioxidative and antitumor activities. However, it remains unclear whether BCA has an effect on energy metabolism. The aim of the present study was to evaluate the anticancer effects and molecular mechanism of the effect of BCA on energy metabolism. We observed that BCA inhibited the growth of U251 cells by the mitochondria-mediated intrinsic apoptotic pathway. BCA treatment reduced metabolic function, repressed mitochondrial membrane potential, and increased the production of reactive oxygen species (ROS) in GBM. In addition, we found that BCA decreased aerobic glycolysis by inactivation of the AKT/mTOR pathway. Taken together, the results demonstrate that treatment with BCA inhibited the proliferation of GBM by regulating metabolic reprogramming.

Citing Articles

Isoflavones: Promising Natural Agent for Cancer Prevention and Treatment.

Ul Hassan M, Shahbaz M, Imran M, Momal U, Naeem H, Mujtaba A Food Sci Nutr. 2025; 13(3):e70091.

PMID: 40078339 PMC: 11896816. DOI: 10.1002/fsn3.70091.


A novel approach to glioblastoma multiforme treatment using modulation of key pathways by naturally occurring small molecules.

Afshari A, Sanati M, Aminyavari S, Keshavarzi Z, Ahmadi S, Oroojalian F Inflammopharmacology. 2025; .

PMID: 39955698 DOI: 10.1007/s10787-025-01666-5.


Prediction of the active compounds and mechanism of Biochanin A in the treatment of Legg-Calvé-Perthes disease based on network pharmacology and molecular docking.

Liu J, Hua Z, Liao S, Li B, Tang S, Huang Q BMC Complement Med Ther. 2024; 24(1):26.

PMID: 38195507 PMC: 10775507. DOI: 10.1186/s12906-023-04298-w.


Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review.

Nahar Metu C, Sutihar S, Sohel M, Zohora F, Hasan A, Miah M Cancer Rep (Hoboken). 2023; 6(10):e1889.

PMID: 37675821 PMC: 10598261. DOI: 10.1002/cnr2.1889.


TCA-phospholipid-glycolysis targeted triple therapy effectively suppresses ATP production and tumor growth in glioblastoma.

Yang S, Zhao J, Cui X, Zhan Q, Yi K, Wang Q Theranostics. 2022; 12(16):7032-7050.

PMID: 36276638 PMC: 9576613. DOI: 10.7150/thno.74197.


References
1.
Zhou L, Wang Y, Zhou M, Zhang Y, Wang P, Li X . HOXA9 inhibits HIF-1α-mediated glycolysis through interacting with CRIP2 to repress cutaneous squamous cell carcinoma development. Nat Commun. 2018; 9(1):1480. PMC: 5902613. DOI: 10.1038/s41467-018-03914-5. View

2.
Jiang B . Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis. 2018; 4(1):25-27. PMC: 6136593. DOI: 10.1016/j.gendis.2017.02.003. View

3.
Katsuya-Gaviria K, Caro E, Carrillo-Barral N, Iglesias-Fernandez R . Reactive Oxygen Species (ROS) and Nucleic Acid Modifications During Seed Dormancy. Plants (Basel). 2020; 9(6). PMC: 7356579. DOI: 10.3390/plants9060679. View

4.
Duan C, Kuang L, Xiang X, Zhang J, Zhu Y, Wu Y . Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH- pathways. Cell Death Dis. 2020; 11(4):251. PMC: 7170874. DOI: 10.1038/s41419-020-2461-9. View

5.
Liu J, Peng Y, Shi L, Wan L, Inuzuka H, Long J . Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Res. 2020; 31(1):80-93. PMC: 7852548. DOI: 10.1038/s41422-020-0372-z. View