» Articles » PMID: 34266238

Mechanisms of O Activation by Mononuclear Non-Heme Iron Enzymes

Overview
Journal Biochemistry
Specialty Biochemistry
Date 2021 Jul 16
PMID 34266238
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Two major subclasses of mononuclear non-heme ferrous enzymes use two electron-donating organic cofactors (α-ketoglutarate or pterin) to activate O to form Fe═O intermediates that further react with their substrates through hydrogen atom abstraction or electrophilic aromatic substitution. New spectroscopic methodologies have been developed, enabling the study of the active sites in these enzymes and their oxygen intermediates. Coupled to electronic structure calculations, the results of these spectroscopies provide fundamental insight into mechanism. This Perspective summarizes the results of these studies in elucidating the mechanism of dioxygen activation to form the Fe═O intermediate and the geometric and electronic structure of this intermediate that enables its high reactivity and selectivity in product formation.

Citing Articles

Experimental electronic structures of the Fe=O bond in S=1 heme vs. nonheme sites: Effect of the porphyrin ligand.

Braun A, Gee L, Waters M, Jose A, Baker M, Mara M Proc Natl Acad Sci U S A. 2025; 122(8):e2420205122.

PMID: 39982745 PMC: 11873928. DOI: 10.1073/pnas.2420205122.


Spectroscopic and computational studies of a bifunctional iron- and 2-oxoglutarate dependent enzyme, AsqJ.

Xue S, Tang Y, Kurnikov I, Liao H, Li J, Chan N Methods Enzymol. 2024; 704:199-232.

PMID: 39300648 PMC: 11415609. DOI: 10.1016/bs.mie.2024.05.023.


Spectroscopic definition of ferrous active sites in non-heme iron enzymes.

Solomon E, Gipson R Methods Enzymol. 2024; 703:29-49.

PMID: 39261000 PMC: 11391101. DOI: 10.1016/bs.mie.2024.05.019.


Exploring the influence of H-bonding and ligand constraints on thiolate ligated non-heme iron mediated dioxygen activation.

Lundahl M, Greiner M, Piquette M, Gannon P, Kaminsky W, Kovacs J Chem Sci. 2024; 15(32):12710-12720.

PMID: 39148773 PMC: 11325341. DOI: 10.1039/d4sc02787f.


Proteomic strategies to interrogate the Fe-S proteome.

Bak D, Weerapana E Biochim Biophys Acta Mol Cell Res. 2024; 1871(7):119791.

PMID: 38925478 PMC: 11365765. DOI: 10.1016/j.bbamcr.2024.119791.


References
1.
Mitchell A, Dunham N, Martinie R, Bergman J, Pollock C, Hu K . Visualizing the Reaction Cycle in an Iron(II)- and 2-(Oxo)-glutarate-Dependent Hydroxylase. J Am Chem Soc. 2017; 139(39):13830-13836. PMC: 5852378. DOI: 10.1021/jacs.7b07374. View

2.
Solomon E, Light K, Liu L, Srnec M, Wong S . Geometric and electronic structure contributions to function in non-heme iron enzymes. Acc Chem Res. 2013; 46(11):2725-39. PMC: 3905672. DOI: 10.1021/ar400149m. View

3.
Andersen O, Stokka A, Flatmark T, Hough E . 2.0A resolution crystal structures of the ternary complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine or L-norleucine: substrate specificity and molecular motions related to substrate.... J Mol Biol. 2003; 333(4):747-57. DOI: 10.1016/j.jmb.2003.09.004. View

4.
Wong S, Srnec M, Matthews M, Liu L, Kwak Y, Park K . Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature. 2013; 499(7458):320-3. PMC: 4123442. DOI: 10.1038/nature12304. View

5.
Jaffe E, Stith L, Lawrence S, Andrake M, Dunbrack Jr R . A new model for allosteric regulation of phenylalanine hydroxylase: implications for disease and therapeutics. Arch Biochem Biophys. 2013; 530(2):73-82. PMC: 3580015. DOI: 10.1016/j.abb.2012.12.017. View